2,101,681 research outputs found

    Asteroids in retrograde resonance with Jupiter and Saturn

    Full text link
    We identify a set of asteroids among Centaurs and Damocloids, that orbit contrary to the common direction of motion in the Solar System and that enter into resonance with Jupiter and Saturn. Their orbits have inclinations I >= 140 deg and semi-major axes a < 15 AU. Two objects are currently in retrograde resonance with Jupiter: 2006 BZ8 in the 2/-5 resonance and 2008 SO218 in the 1/-2 resonance. One object, 2009 QY6, is currently in the 2/-3 retrograde resonance with Saturn. These are the first examples of Solar System objects in retrograde resonance. The present resonant configurations last for several thousand years. Brief captures in retrograde resonance with Saturn are also possible during the 20,000 years integration timespan, particularly in the 1/-1 resonance (2006 BZ8) and the 9/-7 resonance (1999 LE31).Comment: 6 pages, 7 figures, accepted for publication in MNRAS Letter

    Partial Averaging Near a Resonance in Planetary Dynamics

    Get PDF
    Following the general numerical analysis of Melita and Woolfson (1996), I showed in a recent paper that a restricted, planar, circular planetary system consisting of Sun, Jupiter and Saturn would be captured in a near (2:1) resonance when one would allow for frictional dissipation due to interplanetary medium (Haghighipour, 1998). In order to analytically explain this resonance phenomenon, the method of partial averaging near a resonance was utilized and the dynamics of the first-order partially averaged system at resonance was studied. Although in this manner, the finding that resonance lock occurs for all initial relative positions of Jupiter and Saturn was confirmed, the first-order partially averaged system at resonance did not provide a complete picture of the evolutionary dynamics of the system and the similarity between the dynamical behavior of the averaged system and the main planetary system held only for short time intervals. To overcome these limitations, the method of partial averaging near a resonance is extended to the second order of perturbation in this paper and a complete picture of dynamical behavior of the system at resonance is presented. I show in this study that the dynamics of the second-order partially averaged system at resonance resembles the dynamical evolution of the main system during the resonance lock in general, and I present analytical explanations for the evolution of the orbital elements of the main system while captured in resonance.Comment: Plain TeX, 21 Pages, 6 Figures, Submitted to Celest.Mech.Dynamic.Astr

    Alternative Route to Strong Interaction: Narrow Feshbach Resonance

    Full text link
    We show that a narrow resonance produces strong interaction effects far beyond its width on the side of the resonance where the bound state has not been formed. This is due to a resonance structure of its phase shift, which shifts the phase of a large number of scattering states by π\pi before the bound state emerges. As a result, the magnitude of the interaction energy when approaching the resonance on the "upper" and "lower" branch from different side of the resonance is highly asymmetric, unlike their counter part in wide resonances. Measurements of these effects are experimentally feasible.Comment: 4 pages, 5 figure

    THz spectroscopy in the pseudo-Kagome system Cu3Bi(SeO3)2O2Br

    Full text link
    Terahertz (THz) transmission spectra have been measured as function of temperature and magnetic field on single crystals of Cu3Bi(SeO3)2O2Br. In the time-domain THz spectra without magnetic field, two resonance absorptions are observed below the magnetic ordering temperature T_N~27.4 K. The corresponding resonance frequencies increase with decreasing temperature and reach energies of 1.28 and 1.23 meV at 3.5 K. Multi-frequency electron spin resonance transmission spectra as a function of applied magnetic field show the field dependence of four magnetic resonance modes, which can be modeled as a ferromagnetic resonance including demagnetization and anisotropy effects.Comment: 5 pages, 3 figures. All comments are welcome and appreciate

    Collisional cooling of ultra-cold atom ensembles using Feshbach resonances

    Full text link
    We propose a new type of cooling mechanism for ultra-cold fermionic atom ensembles, which capitalizes on the energy dependence of inelastic collisions in the presence of a Feshbach resonance. We first discuss the case of a single magnetic resonance, and find that the final temperature and the cooling rate is limited by the width of the resonance. A concrete example, based on a p-wave resonance of 40^{40}K, is given. We then improve upon this setup by using both a very sharp optical or radio-frequency induced resonance and a very broad magnetic resonance and show that one can improve upon temperatures reached with current technologies.Comment: 4 pages, 3 figure

    Thermal tunability in terahertz metamaterials fabricated on strontium titanate single crystal substrates

    Full text link
    We report an experimental demonstration of thermal tuning of resonance frequency in a planar terahertz metamaterial consisting of a gold split-ring resonator array fabricated on a bulk single crystal strontium titanate (SrTiO3) substrate. Cooling the metamaterial starting from 409 K down to 150 K causes about 50% shift in resonance frequency as compare to its room temperature resonance, and there is very little variation in resonance strength. The resonance shift is due to the temperature-dependent refractive index (or the dielectric constant) of the strontium titanate. The experiment opens up avenues for designing tunable terahertz devices by exploiting the temperature sensitive characteristic of high dielectric constant substrates and complex metal oxide materials.Comment: 6 pages, 3 figures, accepted at Optics Letter

    Resonance induced by repulsive interactions in a model of globally-coupled bistable systems

    Get PDF
    We show the existence of a competition-induced resonance effect for a generic globally coupled bistable system. In particular, we demonstrate that the response of the macroscopic variable to an external signal is optimal for a particular proportion of repulsive links. Furthermore, we show that a resonance also occurs for other system parameters, like the coupling strength and the number of elements. We relate this resonance to the appearance of a multistable region, and we predict the location of the resonance peaks, by a simple spectral analysis of the Laplacian matrix
    corecore