6,142 research outputs found
Recommended from our members
Methods of conceptual clustering and their relation to numerical taxonomy
Artificial Intelligence (AI) methods for machine learning can be viewed as forms of exploratory data analysis, even though they differ markedly from the statistical methods generally connoted by the term. The distinction between methods of machine learning and statistical data analysis is primarily due to differences in the way techniques of each type represent data and structure within data. That is, methods of machine learning are strongly biased toward symbolic (as opposed to numeric) data representations. We explore this difference within a limited context, devoting the bulk of our paper to the explication of conceptual clustering, an extension to the statistically based methods of numerical taxonomy. In conceptual clustering the formation of object clusters is dependent on the quality of 'higher-level' characterizations, termed concepts, of the clusters. The form of concepts used by existing conceptual clustering systems (sets of necessary and sufficient conditions) is described in some detail. This is followed by descriptions of several conceptual clustering techniques, along with sample output. We conclude with a discussion of how alternative concept representations might enhance the effectiveness of future conceptual clustering systems
Scalable Greedy Algorithms for Transfer Learning
In this paper we consider the binary transfer learning problem, focusing on
how to select and combine sources from a large pool to yield a good performance
on a target task. Constraining our scenario to real world, we do not assume the
direct access to the source data, but rather we employ the source hypotheses
trained from them. We propose an efficient algorithm that selects relevant
source hypotheses and feature dimensions simultaneously, building on the
literature on the best subset selection problem. Our algorithm achieves
state-of-the-art results on three computer vision datasets, substantially
outperforming both transfer learning and popular feature selection baselines in
a small-sample setting. We also present a randomized variant that achieves the
same results with the computational cost independent from the number of source
hypotheses and feature dimensions. Also, we theoretically prove that, under
reasonable assumptions on the source hypotheses, our algorithm can learn
effectively from few examples
SIMCO: SIMilarity-based object COunting
We present SIMCO, the first agnostic multi-class object counting approach.
SIMCO starts by detecting foreground objects through a novel Mask RCNN-based
architecture trained beforehand (just once) on a brand-new synthetic 2D shape
dataset, InShape; the idea is to highlight every object resembling a primitive
2D shape (circle, square, rectangle, etc.). Each object detected is described
by a low-dimensional embedding, obtained from a novel similarity-based head
branch; this latter implements a triplet loss, encouraging similar objects
(same 2D shape + color and scale) to map close. Subsequently, SIMCO uses this
embedding for clustering, so that different types of objects can emerge and be
counted, making SIMCO the very first multi-class unsupervised counter.
Experiments show that SIMCO provides state-of-the-art scores on counting
benchmarks and that it can also help in many challenging image understanding
tasks
Reptation quantum Monte Carlo for lattice Hamiltonians with a directed-update scheme
We provide an extension to lattice systems of the reptation quantum Monte
Carlo algorithm, originally devised for continuous Hamiltonians. For systems
affected by the sign problem, a method to systematically improve upon the
so-called fixed-node approximation is also proposed. The generality of the
method, which also takes advantage of a canonical worm algorithm scheme to
measure off-diagonal observables, makes it applicable to a vast variety of
quantum systems and eases the study of their ground-state and excited-states
properties. As a case study, we investigate the quantum dynamics of the
one-dimensional Heisenberg model and we provide accurate estimates of the
ground-state energy of the two-dimensional fermionic Hubbard model
- …
