1,825,895 research outputs found

    Representation Learning by Learning to Count

    Full text link
    We introduce a novel method for representation learning that uses an artificial supervision signal based on counting visual primitives. This supervision signal is obtained from an equivariance relation, which does not require any manual annotation. We relate transformations of images to transformations of the representations. More specifically, we look for the representation that satisfies such relation rather than the transformations that match a given representation. In this paper, we use two image transformations in the context of counting: scaling and tiling. The first transformation exploits the fact that the number of visual primitives should be invariant to scale. The second transformation allows us to equate the total number of visual primitives in each tile to that in the whole image. These two transformations are combined in one constraint and used to train a neural network with a contrastive loss. The proposed task produces representations that perform on par or exceed the state of the art in transfer learning benchmarks.Comment: ICCV 2017(oral

    Neural Discrete Representation Learning

    Full text link
    Learning useful representations without supervision remains a key challenge in machine learning. In this paper, we propose a simple yet powerful generative model that learns such discrete representations. Our model, the Vector Quantised-Variational AutoEncoder (VQ-VAE), differs from VAEs in two key ways: the encoder network outputs discrete, rather than continuous, codes; and the prior is learnt rather than static. In order to learn a discrete latent representation, we incorporate ideas from vector quantisation (VQ). Using the VQ method allows the model to circumvent issues of "posterior collapse" -- where the latents are ignored when they are paired with a powerful autoregressive decoder -- typically observed in the VAE framework. Pairing these representations with an autoregressive prior, the model can generate high quality images, videos, and speech as well as doing high quality speaker conversion and unsupervised learning of phonemes, providing further evidence of the utility of the learnt representations

    Active Discriminative Text Representation Learning

    Full text link
    We propose a new active learning (AL) method for text classification with convolutional neural networks (CNNs). In AL, one selects the instances to be manually labeled with the aim of maximizing model performance with minimal effort. Neural models capitalize on word embeddings as representations (features), tuning these to the task at hand. We argue that AL strategies for multi-layered neural models should focus on selecting instances that most affect the embedding space (i.e., induce discriminative word representations). This is in contrast to traditional AL approaches (e.g., entropy-based uncertainty sampling), which specify higher level objectives. We propose a simple approach for sentence classification that selects instances containing words whose embeddings are likely to be updated with the greatest magnitude, thereby rapidly learning discriminative, task-specific embeddings. We extend this approach to document classification by jointly considering: (1) the expected changes to the constituent word representations; and (2) the model's current overall uncertainty regarding the instance. The relative emphasis placed on these criteria is governed by a stochastic process that favors selecting instances likely to improve representations at the outset of learning, and then shifts toward general uncertainty sampling as AL progresses. Empirical results show that our method outperforms baseline AL approaches on both sentence and document classification tasks. We also show that, as expected, the method quickly learns discriminative word embeddings. To the best of our knowledge, this is the first work on AL addressing neural models for text classification.Comment: This paper got accepted by AAAI 201

    Multi-View Task-Driven Recognition in Visual Sensor Networks

    Full text link
    Nowadays, distributed smart cameras are deployed for a wide set of tasks in several application scenarios, ranging from object recognition, image retrieval, and forensic applications. Due to limited bandwidth in distributed systems, efficient coding of local visual features has in fact been an active topic of research. In this paper, we propose a novel approach to obtain a compact representation of high-dimensional visual data using sensor fusion techniques. We convert the problem of visual analysis in resource-limited scenarios to a multi-view representation learning, and we show that the key to finding properly compressed representation is to exploit the position of cameras with respect to each other as a norm-based regularization in the particular signal representation of sparse coding. Learning the representation of each camera is viewed as an individual task and a multi-task learning with joint sparsity for all nodes is employed. The proposed representation learning scheme is referred to as the multi-view task-driven learning for visual sensor network (MT-VSN). We demonstrate that MT-VSN outperforms state-of-the-art in various surveillance recognition tasks.Comment: 5 pages, Accepted in International Conference of Image Processing, 201
    corecore