46,509 research outputs found

    Insensitivity of alkenone carbon isotopes to atmospheric CO<sub>2</sub> at low to moderate CO<sub>2</sub> levels

    Get PDF
    Atmospheric pCO2 is a critical component of the global carbon system and is considered to be the major control of Earth’s past, present and future climate. Accurate and precise reconstructions of its concentration through geological time are, therefore, crucial to our understanding of the Earth system. Ice core records document pCO2 for the past 800 kyrs, but at no point during this interval were CO2 levels higher than today. Interpretation of older pCO2 has been hampered by discrepancies during some time intervals between two of the main ocean-based proxy methods used to reconstruct pCO2: the carbon isotope fractionation that occurs during photosynthesis as recorded by haptophyte biomarkers (alkenones) and the boron isotope composition (δ11B) of foraminifer shells. Here we present alkenone and δ11B-based pCO2 reconstructions generated from the same samples from the Plio-Pleistocene at ODP Site 999 across a glacial-interglacial cycle. We find a muted response to pCO2 in the alkenone record compared to contemporaneous ice core and δ11B records, suggesting caution in the interpretation of alkenone-based records at low pCO2 levels. This is possibly caused by the physiology of CO2 uptake in the haptophytes. Our new understanding resolves some of the inconsistencies between the proxies and highlights that caution may be required when interpreting alkenone-based reconstructions of pCO2

    3.8 Psychrophilic Myxobacteria from Antarctic Soils

    Get PDF

    WHP Cruise Summary Information of section P01W_a

    Get PDF

    Dividing Antarctica: The Work of the Seventh International Geographical Congress in Berlin 1899

    Get PDF
    Antarctic historians seldom look beyond the Sixth International Geographical Congress held in London in 1895 to locate the origins of the late-nineteenth-century renewal of interest in the region. Moreover, these scholars pay near-exclusive attention to Resolution 3 of that Congress, which marked the exploration of Antarctica as “the greatest piece of geographical exploration still to be undertaken.” Far-less often analyzed is the subsequent Berlin Congress of 1899, to which fell the actual coordination of the independent national expeditions proposing to set for the Far South. This paper, then, will examine the Seventh International Geographical Congress held in Berlin in 1899. It suggests that the 1899 Congress set off a period of exploration (1901-1904) in Antarctica motivated more by competition than collaboration. To organize and direct the aims of these Antarctic voyages, delegates at the 1899 Congress formulated a research program structured around a strict demarcation of each nation’s zone of activity. This essay will show how this partitioning of Antarctic space, though oft-recognized by scholars as a scheme indicative of the desire for international collaboration, betrayed the deeper international tensions and imperial priorities that had stained Antarctic deliberations during the years between the London and Berlin Congresses

    Permafrost, landscape and ecosystem responses to late Quaternary warm stages in Northeast Siberia

    Get PDF
    Permafrost, landscape and ecosystem responses to late Quaternary warm stages in Northeast Siberia S. Wetterich1, F. Kienast2, L. Schirrmeister1, M. Fritz1, A. Andreev3, P. Tarasov4 1Alfred Wegener Institute for Polar and Marine Research, Department of Periglacial Research, Potsdam, Germany; 2Senckenberg Research Institute and Natural History Museum, Research Station for Quaternary Palaeontology, Weimar, Germany; 3Institute of Geology and Mineralogy, University of Cologne, Germany; 4Institute of Geological Sciences, Free University Berlin, Germany Perennially frozen ground is widely distributed in Arctic lowlands and beyond. Permafrost responds sensitive to changes in climate conditions. Climate-driven dynamics of landscape, sedimentation and ecology in periglacial regions are frequently recorded in permafrost deposits. The study of late Quaternary permafrost can therefore reveal past glacial-interglacial and stadialinterstadial environmental dynamics. One of the most striking processes under warming climate conditions is the extensive thawing of permafrost (thermokarst) and subsequent surface subsidence. Thermokarst basins promote the development of lakes, whose sedimentological and paleontological records give insights into past interglacial and interstadial (warm). In this paper we present results of qualitative and quantitative reconstructions of climate and environmental conditions for the last Interglacial (MIS 5e, Kazantsevo; ca. 130 to 115 ka ago), the lateglacial Allerød Interstadial (ca. 13 to 11 uncal. ka BP), and the early Holocene (ca. 10.5 to 8 uncal. ka BP). The study was performed in course of the IPY project #15 ‘Past Permafrost’ with permafrost deposits exposed at the coasts of the Dmitry Laptev Strait (East Siberian Sea, East Siberia). The reconstruction based on fossil-rich findings of plants (pollen, macro-remains) and invertebrates (beetles, chironomids, ostracods gastropods). Interglacial vegetation dynamics are reflected in the pollen records by changes from early interglacial grass-sedge-tundra to shrub-tundra during the interglacial thermal optimum followed by grass-sedge-tundra vegetation at the end of the Kazantsevo warm period. Terrestrial beetle and plant remains prove the former existence of open forest tundra with Dahurian larch, grey alder and boreal shrubs interspersed with patches of steppes and meadows during the interglacial thermal optimum. Mean temperature reconstructions of the warmest month (MTWA, TJuly) for the interglacial thermal optimum are based on quantitative chironomid transfer functions revealed a TJuly of 12.9 ± 0.9 °C. The TJuly reconstructed by plant macrofossils amounts to 13.2 ± 0.5 °C, and the pollen-based TJuly reaches 14.3 ± 3.3 °C. Low net precipitation is reflected by steppe plants and beetles. The temperature reconstruction based on three independent approaches. Nethertheless, all methods consistently indicate an interglacial TJuly about 10 °C higher than today, which is interpreted as a result of a combination of increased insolation and higher climatic continentality during the last Interglacial. Grass-sedge dominated tundra vegetation occurred during the lateglacial to Holocene transition which was replaced by shrub tundra during the early Holocene. The presence of Salix and Betula pollen reflects temperatures about 4 °C higher than present between 12 to 11 uncal. ka BP, during the Allerød Interstadial, but shrubs disappeared in the following Younger Dryas stadial, reflecting a climate deterioration. Alnus fruticosa, Betula nana, Poaceae and Cyperaceae dominate early Holocene pollen spectra. Pollen-based reconstructions point to TJuly 4 °C warmer than present. Shrubs gradually disappeared from coastal areas after 7.6 uncal. ka BP when vegetation cover became similar to modern wet tundra. Thermokarst acted as response to warming conditions on landscape scale in permafrost regions. Concurrent changes in relief, hydrology and ecosystems are obvious and detectable by analyses of the paleontological record preserved in thermokarst deposits

    Improving a joint inversion of GRACE, GPS and modelled ocean bottom pressure by using in-situ data.

    Get PDF
    To investigate the changes in ocean bottom pressure (OBP) and ocean mass Rietbroek et al. (2009) performed a joint least square inversion of weekly GRACE solutions, patterns of large-scale deformation measured by a network of GPS stations and modelled OBP from the Finite Element Sea ice Ocean Model (FESOM). The correlation of this inversion with in-situ OBP ranges between 0.7 and 0.8 in some regions but for example in the tropical Atlantic the correlation is below 0.4. To improve the agreement of the inversion with in-situ data, a part of the in-situ data is included directly into the inversion. The in-situ OBP data was taken from the global OBP data base of Macrander et al. (2010) and averaged to weekly means. Depending on the weight put on the in-situ data, the correlation and regression increases significantly to a value larger than 0.9. The variance of the system is locally reduced by almost 50% at the locations included into the inversion while the difference of the global ocean mean is on average below 10%. Furthermore the global ocean mean is used to compute a bias term for correcting the global ocean mean obtained by the FESOM model
    corecore