3,931 research outputs found

    Fast deep reinforcement learning using online adjustments from the past

    Get PDF
    We propose Ephemeral Value Adjusments (EVA): a means of allowing deep reinforcement learning agents to rapidly adapt to experience in their replay buffer. EVA shifts the value predicted by a neural network with an estimate of the value function found by planning over experience tuples from the replay buffer near the current state. EVA combines a number of recent ideas around combining episodic memory-like structures into reinforcement learning agents: slot-based storage, content-based retrieval, and memory-based planning. We show that EVAis performant on a demonstration task and Atari games.Comment: Accepted at NIPS 201

    An Empirical Study of the Effectiveness of Using a Replay Buffer on Mode Discovery in GFlowNets

    Full text link
    Reinforcement Learning (RL) algorithms aim to learn an optimal policy by iteratively sampling actions to learn how to maximize the total expected return, R(x)R(x). GFlowNets are a special class of algorithms designed to generate diverse candidates, xx, from a discrete set, by learning a policy that approximates the proportional sampling of R(x)R(x). GFlowNets exhibit improved mode discovery compared to conventional RL algorithms, which is very useful for applications such as drug discovery and combinatorial search. However, since GFlowNets are a relatively recent class of algorithms, many techniques which are useful in RL have not yet been associated with them. In this paper, we study the utilization of a replay buffer for GFlowNets. We explore empirically various replay buffer sampling techniques and assess the impact on the speed of mode discovery and the quality of the modes discovered. Our experimental results in the Hypergrid toy domain and a molecule synthesis environment demonstrate significant improvements in mode discovery when training with a replay buffer, compared to training only with trajectories generated on-policy.Comment: Accepted to ICML 2023 workshop on Structured Probabilistic Inference & Generative Modelin

    Offline Experience Replay for Continual Offline Reinforcement Learning

    Full text link
    The capability of continuously learning new skills via a sequence of pre-collected offline datasets is desired for an agent. However, consecutively learning a sequence of offline tasks likely leads to the catastrophic forgetting issue under resource-limited scenarios. In this paper, we formulate a new setting, continual offline reinforcement learning (CORL), where an agent learns a sequence of offline reinforcement learning tasks and pursues good performance on all learned tasks with a small replay buffer without exploring any of the environments of all the sequential tasks. For consistently learning on all sequential tasks, an agent requires acquiring new knowledge and meanwhile preserving old knowledge in an offline manner. To this end, we introduced continual learning algorithms and experimentally found experience replay (ER) to be the most suitable algorithm for the CORL problem. However, we observe that introducing ER into CORL encounters a new distribution shift problem: the mismatch between the experiences in the replay buffer and trajectories from the learned policy. To address such an issue, we propose a new model-based experience selection (MBES) scheme to build the replay buffer, where a transition model is learned to approximate the state distribution. This model is used to bridge the distribution bias between the replay buffer and the learned model by filtering the data from offline data that most closely resembles the learned model for storage. Moreover, in order to enhance the ability on learning new tasks, we retrofit the experience replay method with a new dual behavior cloning (DBC) architecture to avoid the disturbance of behavior-cloning loss on the Q-learning process. In general, we call our algorithm offline experience replay (OER). Extensive experiments demonstrate that our OER method outperforms SOTA baselines in widely-used Mujoco environments.Comment: 9 pages, 4 figure

    Dynamic Weights in Multi-Objective Deep Reinforcement Learning

    Full text link
    Many real-world decision problems are characterized by multiple conflicting objectives which must be balanced based on their relative importance. In the dynamic weights setting the relative importance changes over time and specialized algorithms that deal with such change, such as a tabular Reinforcement Learning (RL) algorithm by Natarajan and Tadepalli (2005), are required. However, this earlier work is not feasible for RL settings that necessitate the use of function approximators. We generalize across weight changes and high-dimensional inputs by proposing a multi-objective Q-network whose outputs are conditioned on the relative importance of objectives and we introduce Diverse Experience Replay (DER) to counter the inherent non-stationarity of the Dynamic Weights setting. We perform an extensive experimental evaluation and compare our methods to adapted algorithms from Deep Multi-Task/Multi-Objective Reinforcement Learning and show that our proposed network in combination with DER dominates these adapted algorithms across weight change scenarios and problem domains

    The Role of Diverse Replay for Generalisation in Reinforcement Learning

    Full text link
    In reinforcement learning (RL), key components of many algorithms are the exploration strategy and replay buffer. These strategies regulate what environment data is collected and trained on and have been extensively studied in the RL literature. In this paper, we investigate the impact of these components in the context of generalisation in multi-task RL. We investigate the hypothesis that collecting and training on more diverse data from the training environment will improve zero-shot generalisation to new environments/tasks. We motivate mathematically and show empirically that generalisation to states that are "reachable" during training is improved by increasing the diversity of transitions in the replay buffer. Furthermore, we show empirically that this same strategy also shows improvement for generalisation to similar but "unreachable" states and could be due to improved generalisation of latent representations.Comment: 14 pages, 8 figure
    corecore