580,974 research outputs found
Atmospheric Science and Remote Sensing Laboratory
During the contract year, scientific research on lightning and lightning hazards was carried out for the Atmospheric Electricity Group in the MSFC Remote Sensing Branch (ED43). These tasks included research on modeling the interaction of lightning optical pulses and cloud particles, estimating lightning hazard threats to the STS system, a small field project to determine the charge structure of winter and stratiform thunderstorms, and analysis of optical pulse data. These activities were performed in conjunction with the ED43 mission to develop a lightning mapper to be placed on one of the GOES-next operational satellites
Design and analysis of unloading and tiedown systems. Apollo logistics support systems MOLAB studies Technical report, 1 Oct. - 7 Dec. 1964
Remote control systems for unloading lunar mobile laboratory from lunar excursion module truck - logistic
Development of interactive and remote learning instruments for engineering education
Many educators have argued for and against the use of remote aids in support of student learning. Some proponents argue that only remote laboratories should be used whereas others argue for the requirement for hands on experience with associated tactical, visual and auditory learning experiences. In this paper we present the methodology for developing a middle ground Virtual Instruments that can be used as a complement learning aid to the hands on laboratory and also if necessary, with added features, can be used as a remote version of the laboratory
The Penn State ORSER system for processing and analyzing ERTS and other MSS data
The author has identified the following significant results. The office for Remote Sensing of Earth Resources (ORSER) of the Space Science and Engineering Laboratory at the Pennsylvania State University has developed an extensive operational system for processing and analyzing ERTS-1 and similar multispectral data. The ORSER system was developed for use by a wide variety of researchers working in remote sensing. Both photointerpretive techniques and automatic computer processing methods have been developed and used, separately and in a combined approach. A remote Job Entry system permits use of an IBM 370/168 computer from any compatible remote terminal, including equipment tied in by long distance telephone connections. An elementary cost analysis has been prepared for the processing of ERTS data
Laboratory requirements for in-situ and remote sensing of suspended material
Recommendations for laboratory and in-situ measurements required for remote sensing of suspended material are presented. This study investigates the properties of the suspended materials, factors influencing the upwelling radiance, and the various types of remote sensing techniques. Calibration and correlation procedures are given to obtain the accuracy necessary to quantify the suspended materials by remote sensing. In addition, the report presents a survey of the national need for sediment data, the agencies that deal with and require the data of suspended sediment, and a summary of some recent findings of sediment measurements
Remote water monitoring system
A remote water monitoring system is described that integrates the functions of sampling, sample preservation, sample analysis, data transmission and remote operation. The system employs a floating buoy carrying an antenna connected by lines to one or more sampling units containing several sample chambers. Receipt of a command signal actuates a solenoid to open an intake valve outward from the sampling unit and communicates the water sample to an identifiable sample chamber. Such response to each signal receipt is repeated until all sample chambers are filled in a sample unit. Each sample taken is analyzed by an electrochemical sensor for a specific property and the data obtained is transmitted to a remote sending and receiving station. Thereafter, the samples remain isolated in the sample chambers until the sampling unit is recovered and the samples removed for further laboratory analysis
All you can measure at the Planetary Emissivity Laboratory (PEL) at DLR, in Berlin
The Institute for Planetary Research has an expertise in spectroscopy of minerals, rocks, meteorites, and organic matter, build up in more than two decades. The available equipment allows spectroscopy from the visible to TIR range using bi-conical reflection, transmission and emission spectroscopy. The institute has an outstanding heritage in designing and building infrared remote-sensing instruments for planetary missions.
The PEL has been operating in various configurations for the last 10 years. The laboratory experimental facilities consist of the main emissivity spectrometer laboratory, a supporting spectrometer laboratory for reflectance and transmission measurements, sample preparation facilities and an extensive collection of rocks and minerals
- …
