100,992 research outputs found
Outage Probability of Dual-Hop Multiple Antenna AF Relaying Systems with Interference
This paper presents an analytical investigation on the outage performance of
dual-hop multiple antenna amplify-and-forward relaying systems in the presence
of interference. For both the fixed-gain and variable-gain relaying schemes,
exact analytical expressions for the outage probability of the systems are
derived. Moreover, simple outage probability approximations at the high signal
to noise ratio regime are provided, and the diversity order achieved by the
systems are characterized. Our results suggest that variable-gain relaying
systems always outperform the corresponding fixed-gain relaying systems. In
addition, the fixed-gain relaying schemes only achieve diversity order of one,
while the achievable diversity order of the variable-gain relaying scheme
depends on the location of the multiple antennas.Comment: Accepted to appear in IEEE Transactions on Communication
Multi-Antenna Assisted Virtual Full-Duplex Relaying with Reliability-Aware Iterative Decoding
In this paper, a multi-antenna assisted virtual full-duplex (FD) relaying
with reliability-aware iterative decoding at destination node is proposed to
improve system spectral efficiency and reliability. This scheme enables two
half-duplex relay nodes, mimicked as FD relaying, to alternatively serve as
transmitter and receiver to relay their decoded data signals regardless the
decoding errors, meanwhile, cancel the inter-relay interference with
QR-decomposition. Then, by deploying the reliability-aware iterative
detection/decoding process, destination node can efficiently mitigate
inter-frame interference and error propagation effect at the same time.
Simulation results show that, without extra cost of time delay and signalling
overhead, our proposed scheme outperforms the conventional selective
decode-and-forward (S-DF) relaying schemes, such as cyclic redundancy check
based S-DF relaying and threshold based S-DF relaying, by up to 8 dB in terms
of bit-error-rate.Comment: 6 pages, 4 figures, conference paper has been submitte
Power Allocation for Conventional and Buffer-Aided Link Adaptive Relaying Systems with Energy Harvesting Nodes
Energy harvesting (EH) nodes can play an important role in cooperative
communication systems which do not have a continuous power supply. In this
paper, we consider the optimization of conventional and buffer-aided link
adaptive EH relaying systems, where an EH source communicates with the
destination via an EH decode-and-forward relay. In conventional relaying,
source and relay transmit signals in consecutive time slots whereas in
buffer-aided link adaptive relaying, the state of the source-relay and
relay-destination channels determines whether the source or the relay is
selected for transmission. Our objective is to maximize the system throughput
over a finite number of transmission time slots for both relaying protocols. In
case of conventional relaying, we propose an offline and several online joint
source and relay transmit power allocation schemes. For offline power
allocation, we formulate an optimization problem which can be solved optimally.
For the online case, we propose a dynamic programming (DP) approach to compute
the optimal online transmit power. To alleviate the complexity inherent to DP,
we also propose several suboptimal online power allocation schemes. For
buffer-aided link adaptive relaying, we show that the joint offline
optimization of the source and relay transmit powers along with the link
selection results in a mixed integer non-linear program which we solve
optimally using the spatial branch-and-bound method. We also propose an
efficient online power allocation scheme and a naive online power allocation
scheme for buffer-aided link adaptive relaying. Our results show that link
adaptive relaying provides performance improvement over conventional relaying
at the expense of a higher computational complexity.Comment: Submitted to IEEE Transactions on Wireless Communication
A Comparative Study of Relaying Schemes with Decode-and-Forward over Nakagami-m Fading Channels
Utilizing relaying techniques to improve performance of wireless systems is a
promising avenue. However, it is crucial to understand what type of relaying
schemes should be used for achieving different performance objectives under
realistic fading conditions. In this paper, we present a general framework for
modelling and evaluating the performance of relaying schemes based on the
decode-and-forward (DF) protocol over independent and not necessarily
identically distributed (INID) Nakagami-m fading channels. In particular, we
present closed-form expressions for the statistics of the instantaneous output
signal-to-noise ratio of four significant relaying schemes with DF; two based
on repetitive transmission and the other two based on relay selection (RS).
These expressions are then used to obtain closed-form expressions for the
outage probability and the average symbol error probability for several
modulations of all considered relaying schemes over INID Nakagami-m fading.
Importantly, it is shown that when the channel state information for RS is
perfect, RS-based transmission schemes always outperform repetitive ones.
Furthermore, when the direct link between the source and the destination nodes
is sufficiently strong, relaying may not result in any gains and in this case
it should be switched-off.Comment: Submitted to Journal of Computer Systems, Networks, and
Communication
- …
