1,128,516 research outputs found

    A default prior for regression coefficients

    Full text link
    When the sample size is not too small, M-estimators of regression coefficients are approximately normal and unbiased. This leads to the familiar frequentist inference in terms of normality-based confidence intervals and p-values. From a Bayesian perspective, use of the (improper) uniform prior yields matching results in the sense that posterior quantiles agree with one-sided confidence bounds. For this, and various other reasons, the uniform prior is often considered objective or non-informative. In spite of this, we argue that the uniform prior is not suitable as a default prior for inference about a regression coefficient in the context of the bio-medical and social sciences. We propose that a more suitable default choice is the normal distribution with mean zero and standard deviation equal to the standard error of the M-estimator. We base this recommendation on two arguments. First, we show that this prior is non-informative for inference about the sign of the regression coefficient. Secondly, we show that this prior agrees well with a meta-analysis of 50 articles from the MEDLINE database

    Quantile regression with varying coefficients

    Full text link
    Quantile regression provides a framework for modeling statistical quantities of interest other than the conditional mean. The regression methodology is well developed for linear models, but less so for nonparametric models. We consider conditional quantiles with varying coefficients and propose a methodology for their estimation and assessment using polynomial splines. The proposed estimators are easy to compute via standard quantile regression algorithms and a stepwise knot selection algorithm. The proposed Rao-score-type test that assesses the model against a linear model is also easy to implement. We provide asymptotic results on the convergence of the estimators and the null distribution of the test statistic. Empirical results are also provided, including an application of the methodology to forced expiratory volume (FEV) data.Comment: Published at http://dx.doi.org/10.1214/009053606000000966 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Regression on manifolds: Estimation of the exterior derivative

    Full text link
    Collinearity and near-collinearity of predictors cause difficulties when doing regression. In these cases, variable selection becomes untenable because of mathematical issues concerning the existence and numerical stability of the regression coefficients, and interpretation of the coefficients is ambiguous because gradients are not defined. Using a differential geometric interpretation, in which the regression coefficients are interpreted as estimates of the exterior derivative of a function, we develop a new method to do regression in the presence of collinearities. Our regularization scheme can improve estimation error, and it can be easily modified to include lasso-type regularization. These estimators also have simple extensions to the "large pp, small nn" context.Comment: Published in at http://dx.doi.org/10.1214/10-AOS823 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Lecture notes on ridge regression

    Full text link
    The linear regression model cannot be fitted to high-dimensional data, as the high-dimensionality brings about empirical non-identifiability. Penalized regression overcomes this non-identifiability by augmentation of the loss function by a penalty (i.e. a function of regression coefficients). The ridge penalty is the sum of squared regression coefficients, giving rise to ridge regression. Here many aspect of ridge regression are reviewed e.g. moments, mean squared error, its equivalence to constrained estimation, and its relation to Bayesian regression. Finally, its behaviour and use are illustrated in simulation and on omics data. Subsequently, ridge regression is generalized to allow for a more general penalty. The ridge penalization framework is then translated to logistic regression and its properties are shown to carry over. To contrast ridge penalized estimation, the final chapter introduces its lasso counterpart
    corecore