1,750,676 research outputs found
A Deep Learning Framework for Unsupervised Affine and Deformable Image Registration
Image registration, the process of aligning two or more images, is the core
technique of many (semi-)automatic medical image analysis tasks. Recent studies
have shown that deep learning methods, notably convolutional neural networks
(ConvNets), can be used for image registration. Thus far training of ConvNets
for registration was supervised using predefined example registrations.
However, obtaining example registrations is not trivial. To circumvent the need
for predefined examples, and thereby to increase convenience of training
ConvNets for image registration, we propose the Deep Learning Image
Registration (DLIR) framework for \textit{unsupervised} affine and deformable
image registration. In the DLIR framework ConvNets are trained for image
registration by exploiting image similarity analogous to conventional
intensity-based image registration. After a ConvNet has been trained with the
DLIR framework, it can be used to register pairs of unseen images in one shot.
We propose flexible ConvNets designs for affine image registration and for
deformable image registration. By stacking multiple of these ConvNets into a
larger architecture, we are able to perform coarse-to-fine image registration.
We show for registration of cardiac cine MRI and registration of chest CT that
performance of the DLIR framework is comparable to conventional image
registration while being several orders of magnitude faster.Comment: Accepted: Medical Image Analysis - Elsevie
Validating Dose Uncertainty Estimates Produced by AUTODIRECT: An Automated Program to Evaluate Deformable Image Registration Accuracy.
Deformable image registration is a powerful tool for mapping information, such as radiation therapy dose calculations, from one computed tomography image to another. However, deformable image registration is susceptible to mapping errors. Recently, an automated deformable image registration evaluation of confidence tool was proposed to predict voxel-specific deformable image registration dose mapping errors on a patient-by-patient basis. The purpose of this work is to conduct an extensive analysis of automated deformable image registration evaluation of confidence tool to show its effectiveness in estimating dose mapping errors. The proposed format of automated deformable image registration evaluation of confidence tool utilizes 4 simulated patient deformations (3 B-spline-based deformations and 1 rigid transformation) to predict the uncertainty in a deformable image registration algorithm's performance. This workflow is validated for 2 DIR algorithms (B-spline multipass from Velocity and Plastimatch) with 1 physical and 11 virtual phantoms, which have known ground-truth deformations, and with 3 pairs of real patient lung images, which have several hundred identified landmarks. The true dose mapping error distributions closely followed the Student t distributions predicted by automated deformable image registration evaluation of confidence tool for the validation tests: on average, the automated deformable image registration evaluation of confidence tool-produced confidence levels of 50%, 68%, and 95% contained 48.8%, 66.3%, and 93.8% and 50.1%, 67.6%, and 93.8% of the actual errors from Velocity and Plastimatch, respectively. Despite the sparsity of landmark points, the observed error distribution from the 3 lung patient data sets also followed the expected error distribution. The dose error distributions from automated deformable image registration evaluation of confidence tool also demonstrate good resemblance to the true dose error distributions. Automated deformable image registration evaluation of confidence tool was also found to produce accurate confidence intervals for the dose-volume histograms of the deformed dose
Slide checkout console
Semiautomatic 35-mm photographic slide checkout console optically and electronically verifies registration of slides at a minimum rate of 250/hr. The console compares slide registration with a registration standard within the console. It verifies a binary code number on the bottom of the slide and visually displays its equivalent
Image Registration Techniques: A Survey
Image Registration is the process of aligning two or more images of the same
scene with reference to a particular image. The images are captured from
various sensors at different times and at multiple view-points. Thus to get a
better picture of any change of a scene or object over a considerable period of
time image registration is important. Image registration finds application in
medical sciences, remote sensing and in computer vision. This paper presents a
detailed review of several approaches which are classified accordingly along
with their contributions and drawbacks. The main steps of an image registration
procedure are also discussed. Different performance measures are presented that
determine the registration quality and accuracy. The scope for the future
research are presented as well
Subspace-Based Holistic Registration for Low-Resolution Facial Images
Subspace-based holistic registration is introduced as an alternative to landmark-based face registration, which has a poor performance on low-resolution images, as obtained in camera surveillance applications. The proposed registration method finds the alignment by maximizing the similarity score between a probe and a gallery image. We use a novel probabilistic framework for both user-independent as well as user-specific face registration. The similarity is calculated using the probability that the face image is correctly aligned in a face subspace, but additionally we take the probability into account that the face is misaligned based on the residual error in the dimensions perpendicular to the face subspace. We perform extensive experiments on the FRGCv2 database to evaluate the impact that the face registration methods have on face recognition. Subspace-based holistic registration on low-resolution images can improve face recognition in comparison with landmark-based registration on high-resolution images. The performance of the tested face recognition methods after subspace-based holistic registration on a low-resolution version of the FRGC database is similar to that after manual registration
- …
