250,661 research outputs found

    X-ray reflection in accreting stellar-mass black hole systems

    Full text link
    The X-ray spectra of accreting stellar-mass black hole systems exhibit spectral features due to reflection, especially broad iron K alpha emission lines. We investigate the reflection by the accretion disc that can be expected in the high/soft state of such a system. First, we perform a self-consistent calculation of the reflection that results from illumination of a hot, inner portion of the disc with its atmosphere in hydrostatic equilibrium. Then we present reflection spectra for a range of illumination strengths and disc temperatures under the assumption of a constant-density atmosphere. Reflection by a hot accretion disc differs in important ways from that of a much cooler disc, such as that expected in an active galactic nucleus.Comment: 5 pages with 9 figures, accepted for publication in MNRA

    Ion implantation damage of silicon as observed by optical reflection spectroscopy in the 1 to 6 eV region

    Get PDF
    Optical reflection spectra of crystalline, sputtered, and ion implanted silicon specimens are presented. Characteristic aspects of the spectra of ion implanted specimens are related to lattice damage

    Albedo and Reflection Spectra of Extrasolar Giant Planets

    Full text link
    We generate theoretical albedo and reflection spectra for a full range of extrasolar giant planet (EGP) models, from Jovian to 51-Pegasi class objects. Our albedo modeling utilizes the latest atomic and molecular cross sections, a Mie theory treatment of extinction by condensates, a variety of particle size distributions, and an extension of the Feautrier radiative transfer method which allows for a general treatment of the scattering phase function. We find that due to qualitative similarities in the compositions and spectra of objects within each of five broad effective temperature ranges, it is natural to establish five representative EGP albedo classes: a ``Jovian'' class (Teff150_{\rm eff} \lesssim 150 K; Class I) with tropospheric ammonia clouds, a ``water cloud'' class (Teff250_{\rm eff} \sim 250 K; Class II) primarily affected by condensed H2_2O, a ``clear'' class (Teff350_{\rm eff} \gtrsim 350 K; Class III) which lacks clouds, and two high-temperature classes: Class IV (900 K \lesssim Teff_{\rm{eff}} \lesssim 1500 K) for which alkali metal absorption predominates, and Class V (Teff_{\rm{eff}} \gtrsim 1500 K and/or low surface gravity (\lesssim 103^3 cm s2^{-2})) for which a high silicate layer shields a significant fraction of the incident radiation from alkali metal and molecular absorption. The resonance lines of sodium and potassium are expected to be salient features in the reflection spectra of Class III, IV, and V objects. We derive Bond albedos and effective temperatures for the full set of known EGPs and explore the possible effects of non-equilibrium condensed products of photolysis above or within principal cloud decks. As in Jupiter, such species can lower the UV/blue albedo substantially, even if present in relatively small mixing ratios.Comment: revised LaTeX manuscript accepted to Ap.J.; also available at http://jupiter.as.arizona.edu/~burrows/paper

    X-ray Reflection By Photoionized Accretion Discs

    Get PDF
    We present the results of reflection calculations that treat the relevant physics with a minimum of assumptions. The temperature and ionization structure of the top five Thomson depths of an illuminated disc are calculated while also demanding that the atmosphere is in hydrostatic equilibrium. In agreement with Nayakshin, Kazanas & Kallman, we find that there is a rapid transition from hot to cold material in the illuminated layer. However, the transition is usually not sharp so that often we find a small but finite region in Thomson depth where there is a stable temperature zone at T \sim 2 x 10^{6} K due to photoelectric heating from recombining ions. As a result, the reflection spectra often exhibit strong features from partially-ionized material, including helium-like Fe K lines and edges. We find that due to the highly ionized features in the spectra these models have difficulty correctly parameterizing the new reflection spectra. There is evidence for a spurious RΓR-\Gamma correlation in the ASCA energy range, where RR is the reflection fraction for a power-law continuum of index Γ\Gamma, confirming the suggestion of Done & Nayakshin that at least part of the R-Gamma correlation reported by Zdziarski, Lubinski & Smith for Seyfert galaxies and X-ray binaries might be due to ionization effects. Although many of the reflection spectra show strong ionized features, these are not typically observed in most Seyfert and quasar X-ray spectra.Comment: 16 pages, accepted by MNRAS, Fig. 8 is in colour Figures and tables changed by a code update. Conclusions unchange

    Analysis and assessment of film materials and associated manufacturing processes for a solar sail

    Get PDF
    Candidate resin manufacturers and film producers were surveyed to determine the availability of key materials and to establish the capabilities of fabricators to prepare ultrathin films of these materials within the capacity/cost/time constraints of the Halley program. Infrared spectra of three candidate samples were obtained by pressing each sample against an internal reflection crystal with the polymer sandwiched between the crystal and the metal backing. The sample size was such that less than one-fourth of the surface of the crystal was covered with the sample. This resulted in weak spectra requiring a six-fold expansion. Internal reflection spectra of the three samples were obtained using both a KRS-5 and a Ge internal reflection crystal. Subtracted infrared spectra of the three samples are presented
    corecore