490,387 research outputs found

    Throughput Maximization for UAV-Aided Backscatter Communication Networks

    Get PDF
    This paper investigates unmanned aerial vehicle (UAV)-aided backscatter communication (BackCom) networks, where the UAV is leveraged to help the backscatter device (BD) forward signals to the receiver. Based on the presence or absence of a direct link between BD and receiver, two protocols, namely transmit-backscatter (TB) protocol and transmit-backscatter-relay (TBR) protocol, are proposed to utilize the UAV to assist the BD. In particular, we formulate the system throughput maximization problems for the two protocols by jointly optimizing the time allocation, reflection coefficient and UAV trajectory. Different static/dynamic circuit power consumption models for the two protocols are analyzed. The resulting optimization problems are shown to be non-convex, which are challenging to solve. We first consider the dynamic circuit power consumption model, and decompose the original problems into three sub-problems, namely time allocation optimization with fixed UAV trajectory and reflection coefficient, reflection coefficient optimization with fixed UAV trajectory and time allocation, and UAV trajectory optimization with fixed reflection coefficient and time allocation. Then, an efficient iterative algorithm is proposed for both protocols by leveraging the block coordinate descent method and successive convex approximation (SCA) techniques. In addition, for the static circuit power consumption model, we obtain the optimal time allocation with a given reflection coefficient and UAV trajectory and the optimal reflection coefficient with low computational complexity by using the Lagrangian dual method. Simulation results show that the proposed protocols are able to achieve significant throughput gains over the compared benchmarks

    Reflection coefficient for superresonant scattering

    Full text link
    We investigate superresonant scattering of acoustic disturbances from a rotating acoustic black hole in the low frequency range. We derive an expression for the reflection coefficient, exhibiting its frequency dependence in this regime.Comment: 7 page

    Acoustic resonances and sound scattering by a shear layer

    Get PDF
    The energy reflection coefficient is evaluated numerically for plane waves incident on a plane shear layer having a linear velocity profile. The shear layer is found to exhibit no resonances and no Brewster angles. The behavior of the reflection coefficient depends crucially on the parameter tau, a nondimensional measure of the disturbance Strouhal number with respect to the disturbance Mach number in the mean flow direction. For moderate values of tau, the amplified reflection regime degenerates into the total reflection one, whereas in the ordinary reflection regime the variation of the reflection coefficient with tau depends on whether or not the corresponding vortex sheet has a Brewster angle. The results indicate that caution should be exercised in uncritically modeling a finite thickness shear layer by a corresponding vortex sheet

    Imaginary Potential as a Counter of Delay Time for Wave Reflection from a 1D Random Potential

    Get PDF
    We show that the delay time distribution for wave reflection from a one-dimensional random potential is related directly to that of the reflection coefficient, derived with an arbitrarily small but uniform imaginary part added to the random potential. Physically, the reflection coefficient, being exponential in the time dwelt in the presence of the imaginary part, provides a natural counter for it. The delay time distribution then follows straightforwardly from our earlier results for the reflection coefficient, and coincides with the distribution obtained recently by Texier and Comtet [C.Texier and A. Comtet, Phys.Rev.Lett. {\bf 82}, 4220 (1999)],with all moments infinite. Delay time distribution for a random amplifying medium is then derived . In this case, however, all moments work out to be finite.Comment: 4 pages, RevTeX, replaced with added proof, figure and references. To appear in Phys. Rev. B Jan01 200

    Modified Kedem-Katchalsky equations for osmosis through nano-pore

    Full text link
    This work presents a modified Kedem-Katchalsky equations for osmosis through nano-pore. osmotic reflection coefficient of a solute was found to be chiefly affected by the entrance of the pore while filtration reflection coefficient can be affected by both the entrance and the internal structure of the pore. Using an analytical method, we get the quantitative relationship between osmotic reflection coefficient and the molecule size. The model is verified by comparing the theoretical results with the reported experimental data of aquaporin osmosis. Our work is expected to pave the way for a better understanding of osmosis in bio-system and to give us new ideas in designing new membranes with better performance.Comment: 19 pages, 4 figure

    The phase shift of an ultrasonic pulse at an oil layer and determination of film thickness

    Get PDF
    An ultrasonic pulse incident on a lubricating oil film in a machine element will be partially reflected and partially transmitted. The proportion of the wave amplitude reflected, termed the reflection coefficient, depends on the film thickness and the acoustic properties of the oil. When the appropriate ultrasonic frequency is used, the magnitude of the reflection coefficient can be used to determine the oil film thickness. However, the reflected wave has both a real component and an imaginary component, and both the amplitude and the phase are functions of the film thickness. The phase of the reflected wave will be shifted from that of the incident wave when it is reflected. In the present study, this phase shift is explored as the film changes and is evaluated as an alternative means to measure oil film thickness. A quas i-static theoretical model of the reflection response from an oil film has been, developed. This model relates the phase shift to the wave frequency and the film properties. Measurements of reflection coefficient from a static model oil film and also from a rotating journal bearing have been recorded. These have been used to determine the oil film thickness using both amplitude and phase shift methods. In both cases, the results agree closely with independent assessments of the oil film thickness. The model of ultrasonic reflection is further extended to incorporate mass and damping terms. Experiments show that both the mass and the internal damping of the oil films tested in this work have a negligible effect on ultrasonic reflection. A potentially v ery useful application for the simultaneous measurement of reflection coefficient amplitude and phase is that the data can be used to negate the need for a reference. The theoretical relationship between phase and amplitude is fitted to the data. An extrapolation is performed to determine the values of amplitude and phase for an infinitely thick layer. This is equivalent to the reference signal determined by measuring the reflection coefficient directly, but importantly does not require the materials to be separated. This provides a simple and effective means of continuously calibrating the film measurement approach

    Super-reflection of light from a random amplifying medium with disorder in the complex refractive index : Statistics of fluctuations

    Full text link
    The probability distribution of the reflection coefficient for light reflected from a one-dimensional random amplifying medium with {\it cross-correlated} spatial disorder in the real and the imaginary parts of the refractive index is derived using the method of invariant imbedding. The statistics of fluctuations have been obtained for both the correlated telegraph noise and the Gaussian white-noise models for the disorder. In both cases, an enhanced backscattering (super-reflection with reflection coefficient greater than unity) results because of coherent feedback due to Anderson localization and coherent amplification in the medium. The results show that the effect of randomness in the imaginary part of the refractive index on localization and super-reflection is qualitatively different.Comment: RevTex 6 pages, 3 figures in ps file

    The role of the reflection coefficient in precision measurement of ultrasonic attenuation

    Get PDF
    Ultrasonic attenuation measurements using contact, pulse-echo techniques are sensitive to surface roughness and couplant thickness variations. This can reduce considerable inaccuracies in the measurement of the attenuation coefficient for broadband pulses. Inaccuracies arise from variations in the reflection coefficient at the buffer-couplant-sample interface. The reflection coefficient is examined as a function of the surface roughness and corresponding couplant thickness variations. Interrelations with ultrasonic frequency are illustrated. Reliable attenuation measurements are obtained only when the frequency dependence of the reflection coefficient is incorporated in signal analysis. Data are given for nickel 200 samples and a silicon nitride ceramic bar having surface roughness variations in the 0.3 to 3.0 microns range for signal bandwidths in the 50 to 100 MHz range

    Stability of the inverse resonance problem for Jacobi operators

    Full text link
    When the coefficients of a Jacobi operator are finitely supported perturbations of the 1 and 0 sequences, respectively, the left reflection coefficient is a rational function whose poles inside, respectively outside, the unit disk correspond to eigenvalues and resonances. By including the zeros of the reflection coefficient, we have a set of data that determines the Jacobi coefficients up to a translation as long as there is at most one half-bound state. We prove that the coefficients of two Jacobi operators are pointwise close assuming that the zeros and poles of their left reflection coefficients are \eps-close in some disk centered at the origin

    Experimental Procedure for the Determination of the Number of Paramagnetic Centers

    Get PDF
    The determination of the number of paramagnetic centers in a given crystal is usually performed by comparing the resonance signal of the unknown centers with that of a calibrated standard. The two most often used standards are CuSO4·5H2O and DPPH. In the procedure described below the number of "spins" is obtained from a measurement of the reflection coefficient of a reflection cavity containing the spins; or more specifically from the change in the reflection coefficient between the "on resonance" and "off resonance" conditions. The measurements can be performed with the aid of the conventional equipment for the measurement of reflection coefficients. Great simplification is realized when a variable coupling cavity [1] is used
    corecore