900,354 research outputs found
Time-Optimal Path Tracking via Reachability Analysis
Given a geometric path, the Time-Optimal Path Tracking problem consists in
finding the control strategy to traverse the path time-optimally while
regulating tracking errors. A simple yet effective approach to this problem is
to decompose the controller into two components: (i)~a path controller, which
modulates the parameterization of the desired path in an online manner,
yielding a reference trajectory; and (ii)~a tracking controller, which takes
the reference trajectory and outputs joint torques for tracking. However, there
is one major difficulty: the path controller might not find any feasible
reference trajectory that can be tracked by the tracking controller because of
torque bounds. In turn, this results in degraded tracking performances. Here,
we propose a new path controller that is guaranteed to find feasible reference
trajectories by accounting for possible future perturbations. The main
technical tool underlying the proposed controller is Reachability Analysis, a
new method for analyzing path parameterization problems. Simulations show that
the proposed controller outperforms existing methods.Comment: 6 pages, 3 figures, ICRA 201
Tracking implicit trajectories
Output tracking of implcitly defined reference trajectories is examined. A continuous-time nonlinear dynamical system is constructed that produces explicit estimates of time-varying implicit trajectories. We prove that incorporation of this "dynamic inverter" into a tracking controller provides exponential output tracking of the implicitly defined trajectory for nonlinear control systems having vector relative degree and well-behaved internal dynanmics
A study in the cognition of individuals’ identity: Solving the problem of singular cognition in object and agent tracking
This article compares the ability to track individuals lacking mental states with the ability to track intentional agents. It explains why reference to individuals raises the problem of explaining how cognitive agents track unique individuals and in what sense reference is based on procedures of perceptual-motor and epistemic tracking. We suggest applying the notion of singular-files from theories in perception and semantics to the problem of tracking intentional agents. In order to elucidate the nature of agent-files, three views of the relation between object- and agent-tracking are distinguished: the Independence, Deflationary and Organism-Dependence Views. The correct view is argued to be the latter, which states that perceptual and epistemic tracking of a unique human organism requires tracking both its spatio-temporal object-properties and its agent-properties
Apparatus and method for stabilized phase detection for binary signal tracking loops
Apparatus and method is presented for phase detection in binary signal tracking loops wherein two bandpass detectors are alternately interchanged between electrical connection with two local code reference tracking signals in order to cancel any adverse effect of gain imbalance in the bandpass detectors and direct current offset or drift. The detectors are time shared in multiplex fashion between the two local reference signals
Pseudonoise code tracking loop
A delay-locked loop is presented for tracking a pseudonoise (PN) reference code in an incoming communication signal. The loop is less sensitive to gain imbalances, which can otherwise introduce timing errors in the PN reference code formed by the loop
Active fault tolerant control for nonlinear systems with simultaneous actuator and sensor faults
The goal of this paper is to describe a novel fault tolerant tracking control (FTTC) strategy based on robust fault estimation and compensation of simultaneous actuator and sensor faults. Within the framework of fault tolerant control (FTC) the challenge is to develop an FTTC design strategy for nonlinear systems to tolerate simultaneous actuator and sensor faults that have bounded first time derivatives. The main contribution of this paper is the proposal of a new architecture based on a combination of actuator and sensor Takagi-Sugeno (T-S) proportional state estimators augmented with proportional and integral feedback (PPI) fault estimators together with a T-S dynamic output feedback control (TSDOFC) capable of time-varying reference tracking. Within this architecture the design freedom for each of the T-S estimators and the control system are available separately with an important consequence on robust L₂ norm fault estimation and robust L₂ norm closed-loop tracking performance. The FTTC strategy is illustrated using a nonlinear inverted pendulum example with time-varying tracking of a moving linear position reference. Keyword
- …
