2,866,684 research outputs found

    Reduced basis method for computational lithography

    Full text link
    A bottleneck for computational lithography and optical metrology are long computational times for near field simulations. For design, optimization, and inverse scatterometry usually the same basic layout has to be simulated multiple times for different values of geometrical parameters. The reduced basis method allows to split up the solution process of a parameterized model into an expensive offline and a cheap online part. After constructing the reduced basis offline, the reduced model can be solved online very fast in the order of seconds or below. Error estimators assure the reliability of the reduced basis solution and are used for self adaptive construction of the reduced system. We explain the idea of reduced basis and use the finite element solver JCMsuite constructing the reduced basis system. We present a 3D optimization application from optical proximity correction (OPC).Comment: BACUS Photomask Technology 200

    Reduced basis method for source mask optimization

    Full text link
    Image modeling and simulation are critical to extending the limits of leading edge lithography technologies used for IC making. Simultaneous source mask optimization (SMO) has become an important objective in the field of computational lithography. SMO is considered essential to extending immersion lithography beyond the 45nm node. However, SMO is computationally extremely challenging and time-consuming. The key challenges are due to run time vs. accuracy tradeoffs of the imaging models used for the computational lithography. We present a new technique to be incorporated in the SMO flow. This new approach is based on the reduced basis method (RBM) applied to the simulation of light transmission through the lithography masks. It provides a rigorous approximation to the exact lithographical problem, based on fully vectorial Maxwell's equations. Using the reduced basis method, the optimization process is divided into an offline and an online steps. In the offline step, a RBM model with variable geometrical parameters is built self-adaptively and using a Finite Element (FEM) based solver. In the online step, the RBM model can be solved very fast for arbitrary illumination and geometrical parameters, such as dimensions of OPC features, line widths, etc. This approach dramatically reduces computational costs of the optimization procedure while providing accuracy superior to the approaches involving simplified mask models. RBM furthermore provides rigorous error estimators, which assure the quality and reliability of the reduced basis solutions. We apply the reduced basis method to a 3D SMO example. We quantify performance, computational costs and accuracy of our method.Comment: BACUS Photomask Technology 201

    A-posteriori error estimates for the localized reduced basis multi-scale method

    Full text link
    We present a localized a-posteriori error estimate for the localized reduced basis multi-scale (LRBMS) method [Albrecht, Haasdonk, Kaulmann, Ohlberger (2012): The localized reduced basis multiscale method]. The LRBMS is a combination of numerical multi-scale methods and model reduction using reduced basis methods to efficiently reduce the computational complexity of parametric multi-scale problems with respect to the multi-scale parameter ε\varepsilon and the online parameter μ\mu simultaneously. We formulate the LRBMS based on a generalization of the SWIPDG discretization presented in [Ern, Stephansen, Vohralik (2010): Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection-diffusion-reaction problems] on a coarse partition of the domain that allows for any suitable discretization on the fine triangulation inside each coarse grid element. The estimator is based on the idea of a conforming reconstruction of the discrete diffusive flux, that can be computed using local information only. It is offline/online decomposable and can thus be efficiently used in the context of model reduction

    A nonintrusive Reduced Basis Method applied to aeroacoustic simulations

    Full text link
    The Reduced Basis Method can be exploited in an efficient way only if the so-called affine dependence assumption on the operator and right-hand side of the considered problem with respect to the parameters is satisfied. When it is not, the Empirical Interpolation Method is usually used to recover this assumption approximately. In both cases, the Reduced Basis Method requires to access and modify the assembly routines of the corresponding computational code, leading to an intrusive procedure. In this work, we derive variants of the EIM algorithm and explain how they can be used to turn the Reduced Basis Method into a nonintrusive procedure. We present examples of aeroacoustic problems solved by integral equations and show how our algorithms can benefit from the linear algebra tools available in the considered code.Comment: 28 pages, 7 figure
    corecore