11,931 research outputs found

    Fractional reaction-diffusion equations

    Full text link
    In a series of papers, Saxena, Mathai, and Haubold (2002, 2004a, 2004b) derived solutions of a number of fractional kinetic equations in terms of generalized Mittag-Leffler functions which provide the extension of the work of Haubold and Mathai (1995, 2000). The subject of the present paper is to investigate the solution of a fractional reaction-diffusion equation. The results derived are of general nature and include the results reported earlier by many authors, notably by Jespersen, Metzler, and Fogedby (1999) for anomalous diffusion and del-Castillo-Negrete, Carreras, and Lynch (2003) for reaction-diffusion systems with L\'evy flights. The solution has been developed in terms of the H-function in a compact form with the help of Laplace and Fourier transforms. Most of the results obtained are in a form suitable for numerical computation.Comment: LaTeX, 17 pages, corrected typo

    Perturbative Linearization of Reaction-Diffusion Equations

    Full text link
    We develop perturbative expansions to obtain solutions for the initial-value problems of two important reaction-diffusion systems, viz., the Fisher equation and the time-dependent Ginzburg-Landau (TDGL) equation. The starting point of our expansion is the corresponding singular-perturbation solution. This approach transforms the solution of nonlinear reaction-diffusion equations into the solution of a hierarchy of linear equations. Our numerical results demonstrate that this hierarchy rapidly converges to the exact solution.Comment: 13 pages, 4 figures, latex2

    Krylov implicit integration factor discontinuous Galerkin methods on sparse grids for high dimensional reaction-diffusion equations

    Full text link
    Computational costs of numerically solving multidimensional partial differential equations (PDEs) increase significantly when the spatial dimensions of the PDEs are high, due to large number of spatial grid points. For multidimensional reaction-diffusion equations, stiffness of the system provides additional challenges for achieving efficient numerical simulations. In this paper, we propose a class of Krylov implicit integration factor (IIF) discontinuous Galerkin (DG) methods on sparse grids to solve reaction-diffusion equations on high spatial dimensions. The key ingredient of spatial DG discretization is the multiwavelet bases on nested sparse grids, which can significantly reduce the numbers of degrees of freedom. To deal with the stiffness of the DG spatial operator in discretizing reaction-diffusion equations, we apply the efficient IIF time discretization methods, which are a class of exponential integrators. Krylov subspace approximations are used to evaluate the large size matrix exponentials resulting from IIF schemes for solving PDEs on high spatial dimensions. Stability and error analysis for the semi-discrete scheme are performed. Numerical examples of both scalar equations and systems in two and three spatial dimensions are provided to demonstrate the accuracy and efficiency of the methods. The stiffness of the reaction-diffusion equations is resolved well and large time step size computations are obtained

    Solving reaction-diffusion equations 10 times faster

    Get PDF
    The most popular numerical method for solving systems of reaction-diffusion equations continues to be a low order finite-difference scheme coupled with low order Euler time stepping. This paper extends previous 1D work and reports experiments that show that with high--order methods one can speed up such simulations for 2D and 3D problems by factors of 10--100. A short MATLAB code (2/3D) that can serve as a template is included.\ud \ud This work was supported by the Engineering and Physical Sciences Research Council (UK) and by the MathWorks, Inc

    Solution of generalized fractional reaction-diffusion equations

    Full text link
    This paper deals with the investigation of a closed form solution of a generalized fractional reaction-diffusion equation. The solution of the proposed problem is developed in a compact form in terms of the H-function by the application of direct and inverse Laplace and Fourier transforms. Fractional order moments and the asymptotic expansion of the solution are also obtained.Comment: LaTeX, 18 pages, corrected typo

    Voter Model Perturbations and Reaction Diffusion Equations

    Get PDF
    We consider particle systems that are perturbations of the voter model and show that when space and time are rescaled the system converges to a solution of a reaction diffusion equation in dimensions d3d \ge 3. Combining this result with properties of the PDE, some methods arising from a low density super-Brownian limit theorem, and a block construction, we give general, and often asymptotically sharp, conditions for the existence of non-trivial stationary distributions, and for extinction of one type. As applications, we describe the phase diagrams of three systems when the parameters are close to the voter model: (i) a stochastic spatial Lotka-Volterra model of Neuhauser and Pacala, (ii) a model of the evolution of cooperation of Ohtsuki, Hauert, Lieberman, and Nowak, and (iii) a continuous time version of the non-linear voter model of Molofsky, Durrett, Dushoff, Griffeath, and Levin. The first application confirms a conjecture of Cox and Perkins and the second confirms a conjecture of Ohtsuki et al in the context of certain infinite graphs. An important feature of our general results is that they do not require the process to be attractive.Comment: 106 pages, 7 figure

    Depinning transitions in discrete reaction-diffusion equations

    Full text link
    We consider spatially discrete bistable reaction-diffusion equations that admit wave front solutions. Depending on the parameters involved, such wave fronts appear to be pinned or to glide at a certain speed. We study the transition of traveling waves to steady solutions near threshold and give conditions for front pinning (propagation failure). The critical parameter values are characterized at the depinning transition and an approximation for the front speed just beyond threshold is given.Comment: 27 pages, 12 figures, to appear in SIAM J. Appl. Mat
    corecore