356,857 research outputs found

    A family of centered random walks on weight lattices conditioned to stay in Weyl chambers

    Get PDF
    Under a natural asumption on the drift, the law of the simple random walk on the multidimensional first quadrant conditioned to always stay in the first octant was obtained by O'Connell in [O]. It coincides with that of the image of the simple random walk under the multidimensional Pitman transform and can be expressed in terms of specializations of Schur functions. This result has been generalized in [LLP1] and [LLP2] for a large class of random walks on weight lattices defined from representations of Kac-Moody algebras and their conditionings to always stay in Weyl chambers. In these various works, the drift of the considered random walk is always assumed in the interior of the cone. In this paper, we introduce for some zero drift random walks defined from minuscule representations a relevant notion of conditioning to stay in Weyl chambers and we compute their laws. Namely, we consider the conditioning for these walks to stay in these cones until an instant we let tend to infinity. We also prove that the laws so obtained can be recovered by letting the drift tend to zero in the transitions matrices obtained in [LLP1]. We also conjecture our results remain true in the more general case of a drift in the frontier of the Weyl chamber

    Fractional Poisson process with random drift

    Full text link
    We study the connection between PDEs and L\'{e}vy processes running with clocks given by time-changed Poisson processes with stochastic drifts. The random times we deal with are therefore given by time-changed Poissonian jumps related to some Frobenious-Perron operators KK associated to random translations. Moreover, we also consider their hitting times as a random clock. Thus, we study processes driven by equations involving time-fractional operators (modelling memory) and fractional powers of the difference operator IKI-K (modelling jumps). For this large class of processes we also provide, in some cases, the explicit representation of the transition probability laws. To this aim, we show that a special role is played by the translation operator associated to the representation of the Poisson semigroup

    Renormalization of Drift and Diffusivity in Random Gradient Flows

    Full text link
    We investigate the relationship between the effective diffusivity and effective drift of a particle moving in a random medium. The velocity of the particle combines a white noise diffusion process with a local drift term that depends linearly on the gradient of a gaussian random field with homogeneous statistics. The theoretical analysis is confirmed by numerical simulation. For the purely isotropic case the simulation, which measures the effective drift directly in a constant gradient background field, confirms the result previously obtained theoretically, that the effective diffusivity and effective drift are renormalized by the same factor from their local values. For this isotropic case we provide an intuitive explanation, based on a {\it spatial} average of local drift, for the renormalization of the effective drift parameter relative to its local value. We also investigate situations in which the isotropy is broken by the tensorial relationship of the local drift to the gradient of the random field. We find that the numerical simulation confirms a relatively simple renormalization group calculation for the effective diffusivity and drift tensors.Comment: Latex 16 pages, 5 figures ep

    Random walk versus random line

    Full text link
    We consider random walks X_n in Z+, obeying a detailed balance condition, with a weak drift towards the origin when X_n tends to infinity. We reconsider the equivalence in law between a random walk bridge and a 1+1 dimensional Solid-On-Solid bridge with a corresponding Hamiltonian. Phase diagrams are discussed in terms of recurrence versus wetting. A drift -delta/X_n of the random walk yields a Solid-On-Solid potential with an attractive well at the origin and a repulsive tail delta(delta+2)/(8X_n^2) at infinity, showing complete wetting for delta1.Comment: 11 pages, 1 figur

    Random walks - a sequential approach

    Full text link
    In this paper sequential monitoring schemes to detect nonparametric drifts are studied for the random walk case. The procedure is based on a kernel smoother. As a by-product we obtain the asymptotics of the Nadaraya-Watson estimator and its as- sociated sequential partial sum process under non-standard sampling. The asymptotic behavior differs substantially from the stationary situation, if there is a unit root (random walk component). To obtain meaningful asymptotic results we consider local nonpara- metric alternatives for the drift component. It turns out that the rate of convergence at which the drift vanishes determines whether the asymptotic properties of the monitoring procedure are determined by a deterministic or random function. Further, we provide a theoretical result about the optimal kernel for a given alternative
    corecore