398,316 research outputs found

    Testing Method of Stent’s Radial Force

    Get PDF
    In case of coronary arteriosclerosis and heart attack balloon-expandable stents are used. These balloon crimped implants are placed to the occluded vessel part and the balloons are pumped with big pressure (4-20 bar). The opened stents ensure the continuously flow of the blood in the opened lumen. The implants have to sustain the outer load from the vessel wall and have to keep the lumen open. In this study a method was worked out which valuating the radial force of the balloon expandable coronary stents. In an experimental program many types of methods were tested to find the best one

    On the Effect of Cavitation on the Radial Forces and Hydrodynamic Stiffness of a Centrifugal Pump

    Get PDF
    The asymmetric flow within a volute exerts a radial force on a centrifugal impeller. The present paper presents experimental measurements of the radial forces on the impeller in the presence of cavitation

    Effect of the Centrifugal Force on Domain Chaos in Rayleigh-B\'enard convection

    Get PDF
    Experiments and simulations from a variety of sample sizes indicated that the centrifugal force significantly affects rotating Rayleigh-B\'enard convection-patterns. In a large-aspect-ratio sample, we observed a hybrid state consisting of domain chaos close to the sample center, surrounded by an annulus of nearly-stationary nearly-radial rolls populated by occasional defects reminiscent of undulation chaos. Although the Coriolis force is responsible for domain chaos, by comparing experiment and simulation we show that the centrifugal force is responsible for the radial rolls. Furthermore, simulations of the Boussinesq equations for smaller aspect ratios neglecting the centrifugal force yielded a domain precession-frequency fϵμf\sim\epsilon^\mu with μ1\mu\simeq1 as predicted by the amplitude-equation model for domain chaos, but contradicted by previous experiment. Additionally the simulations gave a domain size that was larger than in the experiment. When the centrifugal force was included in the simulation, μ\mu and the domain size closely agreed with experiment.Comment: 8 pages, 11 figure

    Rotordynamic Forces on Centrifugal Pump Impellers

    Get PDF
    The asymmetric flow around an impeller in a volute exerts a force upon the impeller. To study the rotordynamic force on an impeller which is vibrating around its machine axis of rotation, the impeller, mounted on a dynamometer, is made to whirl in a circular orbit within the volute. The measured force is expressed as the sum of a steady radial force and an unsteady force due to the eccentric motion of the impeller. These forces were measured in separate tests on a centrifugal pump with radically increased shroud clearance, a two-dimensional impeller, and an impeller with an inducer, the impeller of the HPOTP (High Pressure Oxygen Turbopump) of the SSME (Space Shuttle Main Enginer). In each case, a destabilizing force was observed over a region of positive whirl

    Tight-binding study of structure and vibrations of amorphous silicon

    Full text link
    We present a tight-binding calculation that, for the first time, accurately describes the structural, vibrational and elastic properties of amorphous silicon. We compute the interatomic force constants and find an unphysical feature of the Stillinger-Weber empirical potential that correlates with a much noted error in the radial distribution function associated with that potential. We also find that the intrinsic first peak of the radial distribution function is asymmetric, contrary to usual assumptions made in the analysis of diffraction data. We use our results for the normal mode frequencies and polarization vectors to obtain the zero-point broadening effect on the radial distribution function, enabling us to directly compare theory and a high resolution x-ray diffraction experiment

    2D Simulations of the Line-Driven Instability in Hot-Star Winds: II. Approximations for the 2D Radiation Force

    Full text link
    We present initial attempts to include the multi-dimensional nature of radiation transport in hydrodynamical simulations of the small-scale structure that arises from the line-driven instability in hot-star winds. Compared to previous 1D or 2D models that assume a purely radial radiation force, we seek additionally to treat the lateral momentum and transport of diffuse line-radiation, initially here within a 2D context. A key incentive is to study the damping effect of the associated diffuse line-drag on the dynamical properties of the flow, focusing particularly on whether this might prevent lateral break-up of shell structures at scales near the lateral Sobolev angle of ca. 1o1^{\rm o}. We first explore nonlinear simulations that cast the lateral diffuse force in the simple, local form of a parallel viscosity. Second, to account for the lateral mixing of radiation associated with the radial driving, we next explore models in which the radial force is azimuthally smoothed over a chosen scale. Third, to account for both the lateral line-drag and the lateral mixing in a more self-consistent way, we explore further a method first proposed by Owocki (1999), which uses a restricted 3-ray approach that combines a radial ray with two oblique rays set to have an impact parameter p<Rp < R_{\ast} within the stellar core. From numerical simulations, we find that, compared to equivalent 1-ray simulations, the high-resolution 3-ray models show systematically a much higher lateral coherence.... (Full abstract in paper)Comment: Accepted by A&A, 12 pages, 7 figures, 3 only shown in version available at http://www.mpa-garching.mpg.de/~luc/2778.ps.g
    corecore