2,344 research outputs found

    An Infrared Study of the Circumstellar Material Associated with the Carbon Star R Sculptoris

    Get PDF
    The asymptotic giant branch (AGB) star R Sculptoris (R Scl) is one of the most extensively studied stars on the AGB. R Scl is a carbon star with a massive circumstellar shell (Mshell7.3×103 MM_{shell}\sim 7.3\times10^{-3}~M_{\odot}) which is thought to have been produced during a thermal pulse event 2200\sim2200 years ago. To study the thermal dust emission associated with its circumstellar material, observations were taken with the Faint Object InfraRed CAMera for the SOFIA Telescope (FORCAST) at 19.7, 25.2, 31.5, 34.8, and 37.1 μ\mum. Maps of the infrared emission at these wavelengths were used to study the morphology and temperature structure of the spatially extended dust emission. Using the radiative transfer code DUSTY and fitting the spatial profile of the emission, we find that a geometrically thin dust shell cannot reproduce the observed spatially resolved emission. Instead, a second dust component in addition to the shell is needed to reproduce the observed emission. This component, which lies interior to the dust shell, traces the circumstellar envelope of R Scl. It is best fit by a density profile with nrαn \propto r^{\alpha} where α=0.750.25+0.45\alpha=0.75^{+0.45}_{-0.25} and dust mass of Md=9.04.1+2.3×106 MM_d=9.0^{+2.3}_{-4.1}\times10^{-6}~M_{\odot}. The strong departure from an r2r^{-2} law indicates that the mass-loss rate of R Scl has not been constant. This result is consistent with a slow decline in the post-pulse mass-loss which has been inferred from observations of the molecular gas.Comment: 10 pages, 10 figures, accepted to Ap

    ALMA observations of the vibrationally-excited rotational CO transition v=1,J=32v=1, J=3-2 towards five AGB stars

    Get PDF
    We report the serendipitous detection with ALMA of the vibrationally-excited pure-rotational CO transition v=1,J=32v=1, J=3-2 towards five asymptotic giant branch (AGB) stars, oo Cet, R Aqr, R Scl, W Aql, and π1\pi^1 Gru. The observed lines are formed in the poorly-understood region located between the stellar surface and the region where the wind starts, the so-called warm molecular layer. We successfully reproduce the observed lines profiles using a simple model. We constrain the extents, densities, and kinematics of the region where the lines are produced. R Aqr and R Scl show inverse P-Cygni line profiles which indicate infall of material onto the stars. The line profiles of oo Cet and R Scl show variability. The serendipitous detection towards these five sources shows that vibrationally-excited rotational lines can be observed towards a large number of nearby AGB stars using ALMA. This opens a new possibility for the study of the innermost regions of AGB circumstellar envelopes.Comment: 6 pages, 2 figures, 2 tables, 2016MNRAS.463L..74

    The detached dust shells around the carbon AGB stars R Scl and V644 Sco

    Get PDF
    Detached shells are believed to be created during a thermal pulse, and constrain the time scales and physical properties of one of the main drivers of late stellar evolution. We aim at determining the morphology of the detached dust shells around the carbon AGB stars R Scl and V644 Sco, and compare this to observations of the detached gas shells. We observe the polarised, dust-scattered stellar light around these stars using the PolCor instrument mounted on the ESO 3.6m telescope. Observations were done with a coronographic mask to block out the direct stellar light. The polarised images clearly show the detached shells. Using a dust radiative transfer code to model the dust-scattered polarised light, we constrain the radii and widths of the shells to 19.5 arcsec and 9.4 arcsec for the detached dust shells around R Scl and V644 Sco, respectively. Both shells have an overall spherical symmetry and widths of approx. 2 arcsec. For R Scl we can compare the observed dust emission directly with high spatial-resolution maps of CO(3-2) emission from the shell observed with ALMA. We find that the dust and gas coincide almost exactly, indicating a common evolution. The data presented here for R Scl are the most detailed observations of the entire dusty detached shell to date. For V644 Sco these are the first direct measurements of the detached shell. Also here we find that the dust most likely coincides with the gas shell. The observations are consistent with a scenario where the detached shells are created during a thermal pulse. The determined radii and widths will constrain hydrodynamical models describing the pre-pulse mass loss, the thermal pulse, and post-pulse evolution of the star

    Detection of CI line emission from the detached CO shell of the AGB star R Sculptoris

    Get PDF
    Stars on the asymptotic giant branch (AGB) lose substantial amounts of matter, to the extent that they are important for the chemical evolution of, and dust production in, the universe. The mass loss is believed to increase gradually with age on the AGB, but it may also occur in the form of bursts, possibly related to the thermal pulsing phenomenon. Detached, geometrically thin, CO shells around carbon stars are good signposts of brief and intense mass ejection. We aim to put further constraints on the physical properties of detached CO shells around AGB stars. The photodissociation of CO and other carbon-bearing species in the shells leads to the possibility of detecting lines from neutral carbon. We have therefore searched for the CI(3P13P0^3P_1-\,^3P_0) line at 492 GHz towards two carbon stars, S Sct and R Scl, with detached CO shells of different ages, about 8000 and 2300 years, respectively. The CI(3P13P0^3P_1-\,^3P_0) line was detected towards R Scl. The line intensity is dominated by emission from the detached shell. The detection is at a level consistent with the neutral carbon coming from the full photodissociation of all species except CO, and with only limited photoionisation of carbon. The best fit to the observed 12^{12}CO and 13^{13}CO line intensities, assuming a homogeneous shell, is obtained for a shell mass of about 0.002 MM_\odot, a temperature of about 100 K, and a CO abundance with respect to H2_2 of 103^{-3}. The estimated CI/CO abundance ratio is about 0.3 for the best-fit model. However, a number of arguments point in the direction of a clumpy medium, and a viable interpretation of the data within such a context is provided

    An independent distance estimate to the AGB star R Sculptoris

    Get PDF
    For the carbon AGB star R Sculptoris, the uncertain distance significantly affects the interpretation of observations regarding the evolution of the stellar mass loss during and after the most recent thermal pulse. We aim to provide a new, independent measurement of the distance to R Sculptoris, reducing the absolute uncertainty of the distance estimate to this source. R Scl is a semi-regular pulsating star, surrounded by a thin shell of dust and gas created during a thermal pulse approximately 2000 years ago. The stellar light is scattered by the dust particles in the shell at a radius of 19 arcsec. The variation in the stellar light affects the amount of dust-scattered light with the same period and amplitude ratio, but with a phase lag that depends on the absolute size of the shell. We measured this phase lag by observing the star R Scl and the dust-scattered stellar light from the shell at five epochs between June - December 2017. By observing in polarised light, we imaged the shell in the plane of the sky, removing any uncertainty due to geometrical effects. The phase lag gives the absolute size of the shell, and together with the angular size of the shell directly gives the absolute distance to R Sculptoris. We measured a phase lag between the stellar variations and the variation in the shell of 40.0 +/- 4.0 days. The angular size of the shell is measured to be 19.1 arcsec +/- 0.7 arcsec. Combined, this gives an absolute distance to R Sculptoris of 361 +/- 44 pc. We independently determined the absolute distance to R Scl with an uncertainty of 12%. The estimated distance is consistent with previous estimates, but is one of the most accurate distances to the source to date. In the future, using the variations in polarised, dust-scattered stellar light, may offer an independent possibility to measure reliable distances to AGB stars.Comment: accepted by A&A, 8 pages, 8 figure

    ALMA observations of the variable 12CO/13CO ratio around the asymptotic giant branch star R Sculptoris

    Full text link
    [abridged] The 12CO/13CO ratio is often used as a measure of the 12C/13C ratio in the circumstellar environment, carrying important information about the stellar nucleosynthesis. External processes can change the 12CO and 13CO abundances, and spatially resolved studies of the 12CO/13CO ratio are needed to quantify the effect of these processes on the globally determined values. Additionally, such studies provide important information on the conditions in the circumstellar environment. The detached-shell source R Scl, displaying CO emission from recent mass loss, in a binary-induced spiral structure as well as in a clumpy shell produced during a thermal pulse, provides a unique laboratory for studying the differences in CO isotope abundances throughout its recent evolution. We observed both the 12CO(J=3-2) and the 13CO(J=3-2) line using ALMA. We find significant variations in the 12CO/13CO intensity ratios and consequently in the abundance ratios. The average CO isotope abundance ratio is at least a factor three lower in the shell (~19) than that in the present-day (60). Additionally, variations in the ratio of more than an order of magnitude are found in the shell itself. We attribute these variations to the competition between selective dissociation and isotope fractionation in the shell, of which large parts cannot be warmer than ~35 K. However, we also find that the 12CO/13CO ratio in the present-day mass loss is significantly higher than the 12C/13C ratio determined in the stellar photosphere from molecular tracers (~19). The origin of this discrepancy is still unclear, but we speculate that it is due to an embedded source of UV-radiation that is primarily photo-dissociating 13CO. This radiation source could be the hitherto hidden companion. Alternatively, the UV-radiation could originate from an active chromosphere of R Scl itself....Comment: 6 pages, 5 figures, online data available at http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=J/A+A/556/L

    Properties of dust in the detached shells around U Ant, DR Ser, and V644 Sco

    Full text link
    Understanding the properties of dust produced during the asymptotic giant branch phase of stellar evolution is important for understanding the evolution of stars and galaxies. Recent observations of the carbon AGB star R Scl have shown that observations at far-infrared and submillimetre wavelengths can effectively constrain the grain sizes in the shell, while the total mass depends on the structure of the grains (solid vs. hollow or fluffy). We aim to constrain the properties of the dust observed in the submillimetre in the detached shells around the three carbon AGB stars U Ant, DR Ser, and V644 Sco, and to investigate the constraints on the dust masses and grain sizes provided by far-infrared and submm observations. We observed the carbon AGB stars U Ant, DR Ser, and V644 Sco at 870 micron using LABOCA on APEX. Combined with observations from the optical to far-infrared, we produced dust radiative transfer models of the spectral energy distributions (SEDs) with contributions from the stars, present-day mass-loss and detached shells. We tested the effect of different total dust masses and grain sizes on the SED, and attempted to consistently reproduce the SEDs from the optical to the submm. We derive dust masses in the shells of a few 10e-5 Msun, assuming spherical, solid grains. The best-fit grain radii are comparatively large, and indicate the presence of grains between 0.1 micron-2 micron. The LABOCA observations suffer from contamination from 12CO(3-2), and hence gives fluxes that are higher than the predicted dust emission at submm wavelengths. We investigate the effect on the best-fitting models by assuming different degrees of contamination and show that far-infrared and submillimetre observations are important to constrain the dust mass and grain sizes in the shells.Comment: Accepted by A&

    Fundamental parameters of 16 late-type stars derived from their angular diameter measured with VLTI/AMBER

    Full text link
    Thanks to their large angular dimension and brightness, red giants and supergiants are privileged targets for optical long-baseline interferometers. Sixteen red giants and supergiants have been observed with the VLTI/AMBER facility over a two-years period, at medium spectral resolution (R=1500) in the K band. The limb-darkened angular diameters are derived from fits of stellar atmospheric models on the visibility and the triple product data. The angular diameters do not show any significant temporal variation, except for one target: TX Psc, which shows a variation of 4% using visibility data. For the eight targets previously measured by Long-Baseline Interferometry (LBI) in the same spectral range, the difference between our diameters and the literature values is less than 5%, except for TX Psc, which shows a difference of 11%. For the 8 other targets, the present angular diameters are the first measured from LBI. Angular diameters are then used to determine several fundamental stellar parameters, and to locate these targets in the Hertzsprung-Russell Diagram (HRD). Except for the enigmatic Tc-poor low-mass carbon star W Ori, the location of Tc-rich stars in the HRD matches remarkably well the thermally-pulsating AGB, as it is predicted by the stellar-evolution models. For pulsating stars with periods available, we compute the pulsation constant and locate the stars along the various sequences in the Period -- Luminosity diagram. We confirm the increase in mass along the pulsation sequences, as predicted by the theory, except for W Ori which, despite being less massive, appears to have a longer period than T Cet along the first-overtone sequence.Comment: 15 pages, 9 figures, 6 table

    PACS and SPIRE range spectroscopy of cool, evolved stars

    Get PDF
    Context: At the end of their lives AGB stars are prolific producers of dust and gas. The details of this mass-loss process are still not understood very well. Herschel PACS and SPIRE spectra offer a unique way of investigating properties of AGB stars in general and the mass-loss process in particular. Methods: The HIPE software with the latest calibration is used to process the available PACS and SPIRE spectra of 40 evolved stars. The spectra are convolved with the response curves of the PACS and SPIRE bolometers and compared to the fluxes measured in imaging data of these sources. Custom software is used to identify lines in the spectra, and to determine the central wavelengths and line intensities. Standard molecular line databases are used to associate the observed lines. Because of the limited spectral resolution of the spectrometers several known lines are typically potential counterparts to any observed line. To help identifications the relative contributions in line intensity of the potential counterpart lines are listed for three characteristic temperatures based on LTE calculations and assuming optically thin emission. Result: The following data products are released: the reduced spectra, the lines that are measured in the spectra with wavelength, intensity, potential identifications, and the continuum spectra, i.e. the full spectra with all identified lines removed. As simple examples of how this data can be used in future studies we have fitted the continuum spectra with three power laws and find that the few OH/IR stars seem to have significantly steeper slopes than the other oxygen- and carbon-rich objects in the sample. As another example we constructed rotational diagrams for CO and fitted a two-component model to derive rotational temperatures.Comment: A&A accepte

    Probing the mass-loss history of AGB and red supergiant stars from CO rotational line profiles - II. CO line survey of evolved stars: derivation of mass-loss rate formulae

    Get PDF
    We aim to (1) set up simple and general analytical expressions to estimate mass-loss rates of evolved stars, and (2) from those calculate estimates for the mass-loss rates of asymptotic giant branch (AGB), red supergiant (RSG), and yellow hypergiant stars in our galactic sample. Rotationally excited lines of CO are a very robust diagnostic in the study of circumstellar envelopes (CSEs). When sampling different layers of the CSE, observations of these molecular lines lead to detailed profiles of kinetic temperature, expansion velocity, and density. A state-of-the-art, nonlocal thermal equilibrium, and co-moving frame radiative transfer code that predicts CO line intensities in the CSEs of late-type stars is used in deriving relations between stellar and molecular-line parameters, on the one hand, and mass-loss rate, on the other. We present analytical expressions for estimating the mass-loss rates of evolved stellar objects for 8 rotational transitions of the CO molecule, apply them to our extensive CO data set covering 47 stars, and compare our results to those of previous studies. Our expressions account for line saturation and resolving of the envelope, thereby allowing accurate determination of very high mass-loss rates. We argue that, for estimates based on a single rotational line, the CO(2-1) transition provides the most reliable mass-loss rate. The mass-loss rates calculated for the AGB stars range from 4x10^-8 Msun/yr up to 8x10^-5 Msun/yr. For RSGs they reach values between 2x10^-7 Msun/yr and 3x10^-4 Msun/yr. The estimates for the set of CO transitions allow time variability to be identified in the mass-loss rate. Possible mass-loss-rate variability is traced for 7 of the sample stars. We find a clear relation between the pulsation periods of the AGB stars and their derived mass-loss rates, with a levelling off at approx. 3x10^-5 Msun/yr for periods exceeding 850 days.Comment: Accepted for publication by Astronomy and Astrophysics, 24 pages + 28 pages appendix, 20 figure
    corecore