713 research outputs found

    A note on three types of quasisymmetric functions

    Full text link
    In the context of generating functions for PP-partitions, we revisit three flavors of quasisymmetric functions: Gessel's quasisymmetric functions, Chow's type B quasisymmetric functions, and Poirier's signed quasisymmetric functions. In each case we use the inner coproduct to give a combinatorial description (counting pairs of permutations) to the multiplication in: Solomon's type A descent algebra, Solomon's type B descent algebra, and the Mantaci-Reutenauer algebra, respectively. The presentation is brief and elementary, our main results coming as consequences of PP-partition theorems already in the literature.Comment: 10 page

    Eulerian quasisymmetric functions

    Get PDF
    We introduce a family of quasisymmetric functions called {\em Eulerian quasisymmetric functions}, which specialize to enumerators for the joint distribution of the permutation statistics, major index and excedance number on permutations of fixed cycle type. This family is analogous to a family of quasisymmetric functions that Gessel and Reutenauer used to study the joint distribution of major index and descent number on permutations of fixed cycle type. Our central result is a formula for the generating function for the Eulerian quasisymmetric functions, which specializes to a new and surprising qq-analog of a classical formula of Euler for the exponential generating function of the Eulerian polynomials. This qq-analog computes the joint distribution of excedance number and major index, the only of the four important Euler-Mahonian distributions that had not yet been computed. Our study of the Eulerian quasisymmetric functions also yields results that include the descent statistic and refine results of Gessel and Reutenauer. We also obtain qq-analogs, (q,p)(q,p)-analogs and quasisymmetric function analogs of classical results on the symmetry and unimodality of the Eulerian polynomials. Our Eulerian quasisymmetric functions refine symmetric functions that have occurred in various representation theoretic and enumerative contexts including MacMahon's study of multiset derangements, work of Procesi and Stanley on toric varieties of Coxeter complexes, Stanley's work on chromatic symmetric functions, and the work of the authors on the homology of a certain poset introduced by Bj\"orner and Welker.Comment: Final version; to appear in Advances in Mathematics; 52 pages; this paper was originally part of the longer paper arXiv:0805.2416v1, which has been split into three paper

    Row-strict quasisymmetric Schur functions

    Full text link
    Haglund, Luoto, Mason, and van Willigenburg introduced a basis for quasisymmetric functions called the quasisymmetric Schur function basis, generated combinatorially through fillings of composition diagrams in much the same way as Schur functions are generated through reverse column-strict tableaux. We introduce a new basis for quasisymmetric functions called the row-strict quasisymmetric Schur function basis, generated combinatorially through fillings of composition diagrams in much the same way as Schur functions are generated through row-strict tableaux. We describe the relationship between this new basis and other known bases for quasisymmetric functions, as well as its relationship to Schur polynomials. We obtain a refinement of the omega transform operator as a result of these relationships.Comment: 17 pages, 11 figure

    Chromatic quasisymmetric functions

    Full text link
    We introduce a quasisymmetric refinement of Stanley's chromatic symmetric function. We derive refinements of both Gasharov's Schur-basis expansion of the chromatic symmetric function and Chow's expansion in Gessel's basis of fundamental quasisymmetric functions. We present a conjectural refinement of Stanley's power sum basis expansion, which we prove in special cases. We describe connections between the chromatic quasisymmetric function and both the qq-Eulerian polynomials introduced in our earlier work and, conjecturally, representations of symmetric groups on cohomology of regular semisimple Hessenberg varieties, which have been studied by Tymoczko and others. We discuss an approach, using the results and conjectures herein, to the ee-positivity conjecture of Stanley and Stembridge for incomparability graphs of (3+1)(3+1)-free posets.Comment: 57 pages; final version, to appear in Advances in Mat
    corecore