364,030 research outputs found

    Quantum Simulations on a Quantum Computer

    Get PDF
    We present a general scheme for performing a simulation of the dynamics of one quantum system using another. This scheme is used to experimentally simulate the dynamics of truncated quantum harmonic and anharmonic oscillators using nuclear magnetic resonance. We believe this to be the first explicit physical realization of such a simulation.Comment: 4 pages, 2 figures (\documentstyle[prl,aps,epsfig,amscd]{revtex}); to appear in Phys. Rev. Let

    Interactive simulations for the learning and teaching of quantum mechanics concepts

    Get PDF
    Since 2009, we have been developing and evaluating interactive simulations with accompanying activities for the learning and teaching of quantum mechanics concepts at university level. The QuVis simulations build on education research and our lecturing experience, and aim to specifically target student areas of difficulty in quantum mechanics. Simulations are available on a wide range of topics from introductory to advanced level quantum mechanics. This article gives an overview of the three collections of QuVis simulations developed so far. These include simulations for physics students, simulations for physical chemistry students studying introductory quantum mechanics and simulations to support a new introductory quantum mechanics curriculum based on two-level systems. Evaluation with students plays a decisive role in optimizing the educational effectiveness of the simulations and activities. We describe methods used to refine and further develop the resources. We give examples of revisions based on outcomes of individual student observation sessions. 1.Postprin

    Quantum Algorithms for Fermionic Simulations

    Full text link
    We investigate the simulation of fermionic systems on a quantum computer. We show in detail how quantum computers avoid the dynamical sign problem present in classical simulations of these systems, therefore reducing a problem believed to be of exponential complexity into one of polynomial complexity. The key to our demonstration is the spin-particle connection (or generalized Jordan-Wigner transformation) that allows exact algebraic invertible mappings of operators with different statistical properties. We give an explicit implementation of a simple problem using a quantum computer based on standard qubits.Comment: 38 pages, 2 psfigur

    Efficient quantum simulation of fermionic and bosonic models in trapped ions

    Get PDF
    We analyze the efficiency of quantum simulations of fermionic and bosonic models in trapped ions. In particular, we study the optimal time of entangling gates and the required number of total elementary gates. Furthermore, we exemplify these estimations in the light of quantum simulations of quantum field theories, condensed-matter physics, and quantum chemistry. Finally, we show that trapped-ion technologies are a suitable platform for implementing quantum simulations involving interacting fermionic and bosonic modes, paving the way for overcoming classical computers in the near future.Comment: 13 pages, 3 figures. Published in EPJ Quantum Technolog

    Quantum Simulations of Relativistic Quantum Physics in Circuit QED

    Get PDF
    We present a scheme for simulating relativistic quantum physics in circuit quantum electrodynamics. By using three classical microwave drives, we show that a superconducting qubit strongly-coupled to a resonator field mode can be used to simulate the dynamics of the Dirac equation and Klein paradox in all regimes. Using the same setup we also propose the implementation of the Foldy-Wouthuysen canonical transformation, after which the time derivative of the position operator becomes a constant of the motion.Comment: 13 pages, 3 figure

    Accurate Switching Currents Measurements in Quantum Washboard Potential

    Full text link
    We tackle the problem of accurate simulations of switching currents arising from tunnel events in the washboard potentials associated to Josephson junctions. The measurements of the probability distribution of the switching currents is essential to determine the quantum character of the device, and therefore is at the core of technological applications, as Josephson junctions, that have been proposed for quantum computers. In particular, we show how to accurately calibrate the parameters of the boundary conditions to avoid spurious reflections of the wavefunction from the finite border of numerical simulations. The proposed approximate numerical scheme exploits a quantum version of a prefect matched layers for the boundary problems associated with this class of potentials. Thus, we employ the analogous of a well established electromagnetic method to deal with radiation in mesoscopic quantum systems. Numerical simulations demonstrate that the known analytic results are well recovered in the appropriated limits of quantum measurements. We also find that a relaxation time shows up in the dynamics of the quantum evolution in between two consecutive measurements
    corecore