364,030 research outputs found
Quantum Simulations on a Quantum Computer
We present a general scheme for performing a simulation of the dynamics of
one quantum system using another. This scheme is used to experimentally
simulate the dynamics of truncated quantum harmonic and anharmonic oscillators
using nuclear magnetic resonance. We believe this to be the first explicit
physical realization of such a simulation.Comment: 4 pages, 2 figures (\documentstyle[prl,aps,epsfig,amscd]{revtex}); to
appear in Phys. Rev. Let
Interactive simulations for the learning and teaching of quantum mechanics concepts
Since 2009, we have been developing and evaluating interactive simulations with accompanying activities for the learning and teaching of quantum mechanics concepts at university level. The QuVis simulations build on education research and our lecturing experience, and aim to specifically target student areas of difficulty in quantum mechanics. Simulations are available on a wide range of topics from introductory to advanced level quantum mechanics. This article gives an overview of the three collections of QuVis simulations developed so far. These include simulations for physics students, simulations for physical chemistry students studying introductory quantum mechanics and simulations to support a new introductory quantum mechanics curriculum based on two-level systems. Evaluation with students plays a decisive role in optimizing the educational effectiveness of the simulations and activities. We describe methods used to refine and further develop the resources. We give examples of revisions based on outcomes of individual student observation sessions. 1.Postprin
Quantum Algorithms for Fermionic Simulations
We investigate the simulation of fermionic systems on a quantum computer. We
show in detail how quantum computers avoid the dynamical sign problem present
in classical simulations of these systems, therefore reducing a problem
believed to be of exponential complexity into one of polynomial complexity. The
key to our demonstration is the spin-particle connection (or generalized
Jordan-Wigner transformation) that allows exact algebraic invertible mappings
of operators with different statistical properties. We give an explicit
implementation of a simple problem using a quantum computer based on standard
qubits.Comment: 38 pages, 2 psfigur
Efficient quantum simulation of fermionic and bosonic models in trapped ions
We analyze the efficiency of quantum simulations of fermionic and bosonic
models in trapped ions. In particular, we study the optimal time of entangling
gates and the required number of total elementary gates. Furthermore, we
exemplify these estimations in the light of quantum simulations of quantum
field theories, condensed-matter physics, and quantum chemistry. Finally, we
show that trapped-ion technologies are a suitable platform for implementing
quantum simulations involving interacting fermionic and bosonic modes, paving
the way for overcoming classical computers in the near future.Comment: 13 pages, 3 figures. Published in EPJ Quantum Technolog
Quantum Simulations of Relativistic Quantum Physics in Circuit QED
We present a scheme for simulating relativistic quantum physics in circuit
quantum electrodynamics. By using three classical microwave drives, we show
that a superconducting qubit strongly-coupled to a resonator field mode can be
used to simulate the dynamics of the Dirac equation and Klein paradox in all
regimes. Using the same setup we also propose the implementation of the
Foldy-Wouthuysen canonical transformation, after which the time derivative of
the position operator becomes a constant of the motion.Comment: 13 pages, 3 figure
Accurate Switching Currents Measurements in Quantum Washboard Potential
We tackle the problem of accurate simulations of switching currents arising
from tunnel events in the washboard potentials associated to Josephson
junctions. The measurements of the probability distribution of the switching
currents is essential to determine the quantum character of the device, and
therefore is at the core of technological applications, as Josephson junctions,
that have been proposed for quantum computers. In particular, we show how to
accurately calibrate the parameters of the boundary conditions to avoid
spurious reflections of the wavefunction from the finite border of numerical
simulations. The proposed approximate numerical scheme exploits a quantum
version of a prefect matched layers for the boundary problems associated with
this class of potentials. Thus, we employ the analogous of a well established
electromagnetic method to deal with radiation in mesoscopic quantum systems.
Numerical simulations demonstrate that the known analytic results are well
recovered in the appropriated limits of quantum measurements. We also find that
a relaxation time shows up in the dynamics of the quantum evolution in between
two consecutive measurements
- …
