20,979 research outputs found

    Quantum Private Queries: security analysis

    Full text link
    We present a security analysis of the recently introduced Quantum Private Query (QPQ) protocol. It is a cheat sensitive quantum protocol to perform a private search on a classical database. It allows a user to retrieve an item from the database without revealing which item was retrieved, and at the same time it ensures data privacy of the database (the information that the user can retrieve in a query is bounded and does not depend on the size of the database). The security analysis is based on information-disturbance tradeoffs which show that whenever the provider tries to obtain information on the query, the query (encoded into a quantum system) is disturbed so that the person querying the database can detect the privacy violation.Comment: 12 pages, 1 figur

    QKD-based quantum private query without a failure probability

    Full text link
    In this paper, we present a quantum-key-distribution (QKD)-based quantum private query (QPQ) protocol utilizing single-photon signal of multiple optical pulses. It maintains the advantages of the QKD-based QPQ, i.e., easy to implement and loss tolerant. In addition, different from the situations in the previous QKD-based QPQ protocols, in our protocol, the number of the items an honest user will obtain is always one and the failure probability is always zero. This characteristic not only improves the stability (in the sense that, ignoring the noise and the attack, the protocol would always succeed), but also benefits the privacy of the database (since the database will no more reveal additional secrets to the honest users). Furthermore, for the user's privacy, the proposed protocol is cheat sensitive, and for security of the database, we obtain an upper bound for the leaked information of the database in theory.Comment: 7 pages, 1 figur

    Improved and Formal Proposal for Device Independent Quantum Private Query

    Full text link
    In this paper, we propose a novel Quantum Private Query (QPQ) scheme with full Device-Independent certification. To the best of our knowledge, this is the first time we provide such a full DI-QPQ scheme using EPR-pairs. Our proposed scheme exploits self-testing of shared EPR-pairs along with the self-testing of projective measurement operators in a setting where the client and the server do not trust each other. To certify full device independence, we exploit a strategy to self-test a particular class of POVM elements that are used in the protocol. Further, we provide formal security analysis and obtain an upper bound on the maximum cheating probabilities for both the dishonest client as well as the dishonest server.Comment: 33 pages, 2 figure

    Quantum private queries

    Full text link
    We propose a cheat sensitive quantum protocol to perform a private search on a classical database which is efficient in terms of communication complexity. It allows a user to retrieve an item from the server in possession of the database without revealing which item she retrieved: if the server tries to obtain information on the query, the person querying the database can find it out. Furthermore our protocol ensures perfect data privacy of the database, i.e. the information that the user can retrieve in a single queries is bounded and does not depend on the size of the database. With respect to the known (quantum and classical) strategies for private information retrieval, our protocol displays an exponential reduction both in communication complexity and in running-time computational complexity.Comment: 4 pages, 1 figur

    Provably-secure symmetric private information retrieval with quantum cryptography

    Full text link
    Private information retrieval (PIR) is a database query protocol that provides user privacy, in that the user can learn a particular entry of the database of his interest but his query would be hidden from the data centre. Symmetric private information retrieval (SPIR) takes PIR further by additionally offering database privacy, where the user cannot learn any additional entries of the database. Unconditionally secure SPIR solutions with multiple databases are known classically, but are unrealistic because they require long shared secret keys between the parties for secure communication and shared randomness in the protocol. Here, we propose using quantum key distribution (QKD) instead for a practical implementation, which can realise both the secure communication and shared randomness requirements. We prove that QKD maintains the security of the SPIR protocol and that it is also secure against any external eavesdropper. We also show how such a classical-quantum system could be implemented practically, using the example of a two-database SPIR protocol with keys generated by measurement device-independent QKD. Through key rate calculations, we show that such an implementation is feasible at the metropolitan level with current QKD technology.Comment: 19 page
    corecore