97,717 research outputs found

    Mid-infrared quantum optics in silicon

    Full text link
    Applied quantum optics stands to revolutionise many aspects of information technology, provided performance can be maintained when scaled up. Silicon quantum photonics satisfies the scaling requirements of miniaturisation and manufacturability, but at 1.55 μ\mum it suffers from unacceptable linear and nonlinear loss. Here we show that, by translating silicon quantum photonics to the mid-infrared, a new quantum optics platform is created which can simultaneously maximise manufacturability and miniaturisation, while minimising loss. We demonstrate the necessary platform components: photon-pair generation, single-photon detection, and high-visibility quantum interference, all at wavelengths beyond 2 μ\mum. Across various regimes, we observe a maximum net coincidence rate of 448 ±\pm 12 Hz, a coincidence-to-accidental ratio of 25.7 ±\pm 1.1, and, a net two photon quantum interference visibility of 0.993 ±\pm 0.017. Mid-infrared silicon quantum photonics will bring new quantum applications within reach.Comment: 8 pages, 4 figures; revised figures, updated discussion in section 3, typos corrected, added referenc

    Quantum Memristors in Quantum Photonics

    Full text link
    We propose a method to build quantum memristors in quantum photonic platforms. We firstly design an effective beam splitter, which is tunable in real-time, by means of a Mach-Zehnder-type array with two equal 50:50 beam splitters and a tunable retarder, which allows us to control its reflectivity. Then, we show that this tunable beam splitter, when equipped with weak measurements and classical feedback, behaves as a quantum memristor. Indeed, in order to prove its quantumness, we show how to codify quantum information in the coherent beams. Moreover, we estimate the memory capability of the quantum memristor. Finally, we show the feasibility of the proposed setup in integrated quantum photonics

    Hybrid integration methods for on-chip quantum photonics

    Get PDF
    The goal of integrated quantum photonics is to combine components for the generation, manipulation, and detection of nonclassical light in a phase-stable and efficient platform. Solid-state quantum emitters have recently reached outstanding performance as single-photon sources. In parallel, photonic integrated circuits have been advanced to the point that thousands of components can be controlled on a chip with high efficiency and phase stability. Consequently, researchers are now beginning to combine these leading quantum emitters and photonic integrated circuit platforms to realize the best properties of each technology. In this paper, we review recent advances in integrated quantum photonics based on such hybrid systems. Although hybrid integration solves many limitations of individual platforms, it also introduces new challenges that arise from interfacing different materials. We review various issues in solid-state quantum emitters and photonic integrated circuits, the hybrid integration techniques that bridge these two systems, and methods for chip-based manipulation of photons and emitters. Finally, we discuss the remaining challenges and future prospects of on-chip quantum photonics with integrated quantum emitters. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreemen

    Integrated Silicon Photonics for High-Speed Quantum Key Distribution

    Get PDF
    Integrated photonics offers great potential for quantum communication devices in terms of complexity, robustness and scalability. Silicon photonics in particular is a leading platform for quantum photonic technologies, with further benefits of miniaturisation, cost-effective device manufacture and compatibility with CMOS microelectronics. However, effective techniques for high-speed modulation of quantum states in standard silicon photonic platforms have been limited. Here we overcome this limitation and demonstrate high-speed low-error quantum key distribution modulation with silicon photonic devices combining slow thermo-optic DC biases and fast (10~GHz bandwidth) carrier-depletion modulation. The ability to scale up these integrated circuits and incorporate microelectronics opens the way to new and advanced integrated quantum communication technologies and larger adoption of quantum-secured communications

    Photonic quantum technologies

    Full text link
    The first quantum technology, which harnesses uniquely quantum mechanical effects for its core operation, has arrived in the form of commercially available quantum key distribution systems that achieve enhanced security by encoding information in photons such that information gained by an eavesdropper can be detected. Anticipated future quantum technologies include large-scale secure networks, enhanced measurement and lithography, and quantum information processors, promising exponentially greater computation power for particular tasks. Photonics is destined for a central role in such technologies owing to the need for high-speed transmission and the outstanding low-noise properties of photons. These technologies may use single photons or quantum states of bright laser beams, or both, and will undoubtably apply and drive state-of-the-art developments in photonics

    Topological Photonics

    Get PDF
    Topological photonics is a rapidly emerging field of research in which geometrical and topological ideas are exploited to design and control the behavior of light. Drawing inspiration from the discovery of the quantum Hall effects and topological insulators in condensed matter, recent advances have shown how to engineer analogous effects also for photons, leading to remarkable phenomena such as the robust unidirectional propagation of light, which hold great promise for applications. Thanks to the flexibility and diversity of photonics systems, this field is also opening up new opportunities to realize exotic topological models and to probe and exploit topological effects in new ways. This article reviews experimental and theoretical developments in topological photonics across a wide range of experimental platforms, including photonic crystals, waveguides, metamaterials, cavities, optomechanics, silicon photonics, and circuit QED. A discussion of how changing the dimensionality and symmetries of photonics systems has allowed for the realization of different topological phases is offered, and progress in understanding the interplay of topology with non-Hermitian effects, such as dissipation, is reviewed. As an exciting perspective, topological photonics can be combined with optical nonlinearities, leading toward new collective phenomena and novel strongly correlated states of light, such as an analog of the fractional quantum Hall effect.Comment: 87 pages, 30 figures, published versio
    corecore