97,717 research outputs found
Mid-infrared quantum optics in silicon
Applied quantum optics stands to revolutionise many aspects of information
technology, provided performance can be maintained when scaled up. Silicon
quantum photonics satisfies the scaling requirements of miniaturisation and
manufacturability, but at 1.55 m it suffers from unacceptable linear and
nonlinear loss. Here we show that, by translating silicon quantum photonics to
the mid-infrared, a new quantum optics platform is created which can
simultaneously maximise manufacturability and miniaturisation, while minimising
loss. We demonstrate the necessary platform components: photon-pair generation,
single-photon detection, and high-visibility quantum interference, all at
wavelengths beyond 2 m. Across various regimes, we observe a maximum net
coincidence rate of 448 12 Hz, a coincidence-to-accidental ratio of 25.7
1.1, and, a net two photon quantum interference visibility of 0.993
0.017. Mid-infrared silicon quantum photonics will bring new quantum
applications within reach.Comment: 8 pages, 4 figures; revised figures, updated discussion in section 3,
typos corrected, added referenc
Quantum Memristors in Quantum Photonics
We propose a method to build quantum memristors in quantum photonic
platforms. We firstly design an effective beam splitter, which is tunable in
real-time, by means of a Mach-Zehnder-type array with two equal 50:50 beam
splitters and a tunable retarder, which allows us to control its reflectivity.
Then, we show that this tunable beam splitter, when equipped with weak
measurements and classical feedback, behaves as a quantum memristor. Indeed, in
order to prove its quantumness, we show how to codify quantum information in
the coherent beams. Moreover, we estimate the memory capability of the quantum
memristor. Finally, we show the feasibility of the proposed setup in integrated
quantum photonics
Hybrid integration methods for on-chip quantum photonics
The goal of integrated quantum photonics is to combine components for the generation, manipulation, and detection of nonclassical light in a phase-stable and efficient platform. Solid-state quantum emitters have recently reached outstanding performance as single-photon sources. In parallel, photonic integrated circuits have been advanced to the point that thousands of components can be controlled on a chip with high efficiency and phase stability. Consequently, researchers are now beginning to combine these leading quantum emitters and photonic integrated circuit platforms to realize the best properties of each technology. In this paper, we review recent advances in integrated quantum photonics based on such hybrid systems. Although hybrid integration solves many limitations of individual platforms, it also introduces new challenges that arise from interfacing different materials. We review various issues in solid-state quantum emitters and photonic integrated circuits, the hybrid integration techniques that bridge these two systems, and methods for chip-based manipulation of photons and emitters. Finally, we discuss the remaining challenges and future prospects of on-chip quantum photonics with integrated quantum emitters. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreemen
Integrated Silicon Photonics for High-Speed Quantum Key Distribution
Integrated photonics offers great potential for quantum communication devices
in terms of complexity, robustness and scalability. Silicon photonics in
particular is a leading platform for quantum photonic technologies, with
further benefits of miniaturisation, cost-effective device manufacture and
compatibility with CMOS microelectronics. However, effective techniques for
high-speed modulation of quantum states in standard silicon photonic platforms
have been limited. Here we overcome this limitation and demonstrate high-speed
low-error quantum key distribution modulation with silicon photonic devices
combining slow thermo-optic DC biases and fast (10~GHz bandwidth)
carrier-depletion modulation. The ability to scale up these integrated circuits
and incorporate microelectronics opens the way to new and advanced integrated
quantum communication technologies and larger adoption of quantum-secured
communications
Photonic quantum technologies
The first quantum technology, which harnesses uniquely quantum mechanical
effects for its core operation, has arrived in the form of commercially
available quantum key distribution systems that achieve enhanced security by
encoding information in photons such that information gained by an eavesdropper
can be detected. Anticipated future quantum technologies include large-scale
secure networks, enhanced measurement and lithography, and quantum information
processors, promising exponentially greater computation power for particular
tasks. Photonics is destined for a central role in such technologies owing to
the need for high-speed transmission and the outstanding low-noise properties
of photons. These technologies may use single photons or quantum states of
bright laser beams, or both, and will undoubtably apply and drive
state-of-the-art developments in photonics
Topological Photonics
Topological photonics is a rapidly emerging field of research in which
geometrical and topological ideas are exploited to design and control the
behavior of light. Drawing inspiration from the discovery of the quantum Hall
effects and topological insulators in condensed matter, recent advances have
shown how to engineer analogous effects also for photons, leading to remarkable
phenomena such as the robust unidirectional propagation of light, which hold
great promise for applications. Thanks to the flexibility and diversity of
photonics systems, this field is also opening up new opportunities to realize
exotic topological models and to probe and exploit topological effects in new
ways. This article reviews experimental and theoretical developments in
topological photonics across a wide range of experimental platforms, including
photonic crystals, waveguides, metamaterials, cavities, optomechanics, silicon
photonics, and circuit QED. A discussion of how changing the dimensionality and
symmetries of photonics systems has allowed for the realization of different
topological phases is offered, and progress in understanding the interplay of
topology with non-Hermitian effects, such as dissipation, is reviewed. As an
exciting perspective, topological photonics can be combined with optical
nonlinearities, leading toward new collective phenomena and novel strongly
correlated states of light, such as an analog of the fractional quantum Hall
effect.Comment: 87 pages, 30 figures, published versio
- …