50,290 research outputs found
QuNetSim: A Software Framework for Quantum Networks
As quantum internet technologies develop, the need for simulation software
and education for quantum internet rises. QuNetSim aims to fill this need.
QuNetSim is a Python software framework that can be used to simulate quantum
networks up to the network layer. The goal of QuNetSim is to make it easier to
investigate and test quantum networking protocols over various quantum network
configurations and parameters. The framework incorporates many known quantum
network protocols so that users can quickly build simulations and beginners can
easily learn to implement their own quantum networking protocols.Comment: 11 pages, 6 figure
Distributed quantum sensing in a continuous variable entangled network
Networking plays a ubiquitous role in quantum technology. It is an integral
part of quantum communication and has significant potential for upscaling
quantum computer technologies that are otherwise not scalable. Recently, it was
realized that sensing of multiple spatially distributed parameters may also
benefit from an entangled quantum network. Here we experimentally demonstrate
how sensing of an averaged phase shift among four distributed nodes benefits
from an entangled quantum network. Using a four-mode entangled continuous
variable (CV) state, we demonstrate deterministic quantum phase sensing with a
precision beyond what is attainable with separable probes. The techniques
behind this result can have direct applications in a number of primitives
ranging from biological imaging to quantum networks of atomic clocks
Topology Adaption for the Quantum Internet
In the quantum repeater networks of the quantum Internet, the varying
stability of entangled quantum links makes dynamic topology adaption an
emerging issue. Here we define an efficient topology adaption method for
quantum repeater networks. The model assumes the random failures of entangled
links and several parallel demands from legal users. The shortest path defines
a set of entangled links for which the probability of stability is above a
critical threshold. The scheme is utilized in a base-graph of the overlay
quantum network to provide an efficient shortest path selection for the demands
of all users of the network. We study the problem of entanglement assignment in
a quantum repeater network, prove its computational complexity, and show an
optimization procedure. The results are particularly convenient for future
quantum networking, quantum-Internet, and experimental long-distance quantum
communications.Comment: 17 pages, Journal-ref: Quant. Inf. Proc. (2018
- …
