14,428 research outputs found

    First evidence of resistance to pyrethroid insecticides in Italian Aedes albopictus populations after 26 years since invasion

    Get PDF
    Aedes albopictus has spread during the last decades all over the world. This has increased significantly the risk of exotic arbovirus transmission (e.g. Chikungunya, Dengue, and Zika) also in temperate areas, as testified by the Chikungunya 2007- and 2017-outbreaks in north-east and central Italy. Insecticides represent a main tool for limiting the circulation of these mosquito-borne viruses. The aim of the present study is to start filling the current gap of knowledge on pyrethroid insecticide resistance of European Ae. albopictus populations focusing on populations from Italy, Albania and Greece

    Identifying Current and Missing Knowledge in the Control of Pyrethroid-Resistant Triatoma Infestans, Vector of Chagas Disease

    Get PDF
    Triatomines are blood-sucking bugs that occur mainly in Latin America. They are vectors of Trypanosoma cruzi, the parasite that causes Chagas disease. Chemical control of Chagas disease´s vectors by using pyrethroid insecticides has been highly successful for the elimination of domestic infestation and consequently the reduction of the vector transmission. However, at the beginning of the 2000s a decrease in the effectiveness of the chemical control of triatomines was detected in several areas from Argentina and Bolivia, particularly in the Gran Chaco eco-region. During the last 15 years, several studies demonstrated the evolution of insecticide resistance in Triatoma infestans and established the presence of different toxicological profiles, the autosomal inherence of resistance, the biological costs of deltamethrin resistance, the expression of deltamethrin resistance thorough the embryonic development, and the main mechanisms of resistance (target-site insensitivity and metabolic detoxification of insecticides). The emergence of pyrethroid resistance coupled with the usual difficulties in sustaining adequate rates of insecticide applications emphasize the need of incorporating other tools for integrated vector and disease control, such as the proposal of the organo-phosphorus insecticide fenitrothion as an alternative chemical strategy for the management of the resistance because it was effective against pyrethroid-resistant populations in laboratory and semi-field trials. New studies on the current situation of presence and spread of resistant populations of triatomines and the acceptance of the use of alternative insecticides are critical requirements in the implementation of strategies for the management of resistance and for the rational design of campaigns oriented to reducing the vector transmission of Chagas’ disease.Fil: Roca Acevedo, Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; ArgentinaFil: Picollo, Maria Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; Argentin

    Susceptibility Status of Malaria Vectors to Insecticides Commonly used for Malaria Control in Tanzania.

    Get PDF
    The aim of the study was to monitor the insecticide susceptibility status of malaria vectors in 12 sentinel districts of Tanzania. WHO standard methods were used to detect knock-down and mortality in the wild female Anopheles mosquitoes collected in sentinel districts. The WHO diagnostic doses of 0.05% deltamethrin, 0.05% lambdacyhalothrin, 0.75% permethrin and 4% DDT were used. The major malaria vectors in Tanzania, Anopheles gambiae s.l., were susceptible (mortality rate of 98-100%) to permethrin, deltamethrin, lambdacyhalothrin and DDT in most of the surveyed sites. However, some sites recorded marginal susceptibility (mortality rate of 80-97%); Ilala showed resistance to DDT (mortality rate of 65% [95% CI, 54-74]), and Moshi showed resistance to lambdacyhalothrin (mortality rate of 73% [95% CI, 69-76]) and permethrin (mortality rate of 77% [95% CI, 73-80]). The sustained susceptibility of malaria vectors to pyrethroid in Tanzania is encouraging for successful malaria control with Insecticide-treated nets and IRS. However, the emergency of focal points with insecticide resistance is alarming. Continued monitoring is essential to ensure early containment of resistance, particularly in areas that recorded resistance or marginal susceptibility and those with heavy agricultural and public health use of insecticides

    A significant increase in kdr in Anopheles gambiae is associated with an intensive vector control intervention in Burundi highlands.

    Get PDF
    OBJECTIVES AND METHODS: In Burundi, the occurrence of the knock down resistance (kdr) mutation in Anopheles gambiae sensu lato (s.l.) was determined for six consecutive years within the framework of a vector control programme. Findings were also linked with the insecticide resistance status observed with bioassay in An. gambiae s.l. and An. funestus. RESULTS: The proportion of An. gambiae s.l. carrying the East Leu-Ser kdr mutation was 1% before the spraying intervention in 2002; by 2007 it was 86% in sprayed valleys and 67% in untreated valleys. Multivariate analysis showed that increased risk of carrying the kdr mutation is associated with spraying interventions, location and time. In bioassays conducted between 2005 and 2007 at five sites, An. funestus was susceptible to permethrin, deltamethrin and DDT. Anopheles gambiae s.l. remained susceptible or tolerant to deltamethrin and resistant to DDT and permethrin, but only when kdr allele carriers reached 90% of the population. CONCLUSIONS: The cross-resistance against DDT and permethrin in Karuzi suggests a possible kdr resistance mechanism. Nevertheless, the homozygous resistant genotype alone does not entirely explain the bioassay results, and other mechanisms conferring resistance cannot be ruled out. After exposure to all three insecticides, homozygote individuals for the kdr allele dominate among the surviving An. gambiae s.l. This confirms the potential selection pressure of pyrethroids on kdr mutation. However, the high occurrence of the kdr mutation, even at sites far from the sprayed areas, suggests a selection pressure other than that exerted by the vector control programme

    \ud Detection and Monitoring of Insecticide Resistance in Malaria Vectors in Tanzania Mainland\ud

    Get PDF
    \ud Vector control is a major component of the global strategy for malaria control which aims to prevent parasite transmission mainly through interventions targeting adult Anopheline vectors. Insecticide treated nets (ITNs) and indoor residual spraying (IRS) are the cornerstone of malaria vector control programmes. These major interventions in most cases use pyrethroid insecticides which are also used for agricultural purposes. With widespread development of resistance to pyrethroid insecticides in malaria vectors raises concern over the sustainability of insecticide-based interventions for malaria control. Therefore, close monitoring of performance of the insecticides against malaria vectors is essential for early detection and\ud management of resistance. To measure pyrethroid susceptibility in populations of malaria vectors in Tanzania and to test the efficacy of LLINs/ITNs and insecticide residues on sprayed wall substrates in the IRS operation areas. In 2011 the National Institute for Medical Research (NIMR) in collaboration with National Malaria Control Programme (NMCP) conducted large scale surveillance to determine the countrywide susceptibility levels of malaria vectors to insecticides used for both public health and agricultural purposes. Anopheles gambiae Giles s.l. were collected during national surveys and samples of LLINs/ITNs in the 14 sentinel sites and houses from the IRS areas were randomly selected for bioassays to test the efficacy and insecticide residual effects on sprayed wall substrates respectively. Wild adult mosquitoes for susceptibility testing were collected by resting catches indoors. Net traps (outdoors and indoors) were set up to enhance catches. WHO Susceptibility kits were used to test for resistance status using test papers: Lambdacyhalothrin 0.05%, Deltamethrin 0.05%, Permethrin 0.75%, DDT 4%, Propoxur 0.1% and Fenitrothion 1%. The quality of the test paper was checked against a laboratory susceptible An. gambiae Kisumu strain. Knockdown effect and mortality were measured in standard WHO susceptibility tests and cone bio-efficacy tests. Whereas, con bioassays on treated walls and ITNs were conducted using the laboratory susceptible An. gambiae Kisumu strain. The results from the surveillance recorded continued susceptibility of malaria vectors to commonly used insecticides. However, there were some isolated cases of resistance and/or reduced susceptibility to pyrethroid insecticides which may not compromise the current vector control interventions in the country. Anopheles gambiae s.l. showed resistance (15-28%) to each of the pyrethroids and to DDT but not to Organophosphates (Propoxur 0.1%), and Carbamates (Fenitrothion 1%). The information obtained from this surveillance is expected to be used to guide the National Malaria Control Programme on the rational selection of insecticides for malaria vector control and for the national mitigation plans for management and containment of malaria vector resistance in the country. The current observation warrants more vigilant monitoring of the susceptibility of malaria mosquitoes to commonly used insecticides in areas found with resistance and/or reduced levels of susceptibility of malaria vectors to insecticides, particularly in areas with heavy agricultural and/or public health use of insecticides where resistance is likely to develop. The current survey covered malaria vectors only and not the non malaria vectors (nuisance) mosquitoes such as Culex. Similar monitoring of insecticide susceptibility of this non malaria vectors may be needed to ensure public motivation for sustained use of ITNs/LLINs in the country. The surveillance leading to these results received funding from PMI/USAID through RTI International with Sub Agreement Number 33300212555.\u

    L925I mutation in the Para-type sodium channel is associated with pyrethroid resistance in Triatoma infestans from the Gran Chaco region

    Get PDF
    Background: Chagas' disease is an important public health concern in Latin America. Despite intensive vector control efforts using pyrethroid insecticides, the elimination of Triatoma infestans has failed in the Gran Chaco, an ecoregion that extends over Argentina, Paraguay, Bolivia and Brazil. The voltage-gated sodium channel is the target site of pyrethroid insecticides. Point mutations in domain II region of the channel have been implicated in pyrethroid resistance of several insect species. Methods and Findings: In the present paper, we identify L925I, a new pyrethroid resistance-conferring mutation in T. infestans. This mutation has been found only in hemipterans. In T. infestans, L925I mutation occurs in a resistant population from the Gran Chaco region and is associated with inefficiency in the control campaigns. We also describe a method to detect L925I mutation in individuals from the field. Conclusions and Significance: The findings have important implications in the implementation of strategies for resistance management and in the rational design of campaigns for the control of Chagas' disease transmission.Fil: Capriotti, Natalia. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Mougabure Cueto, Gastón Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas para la Defensa. Centro de Investigación de Plagas e Insecticidas; ArgentinaFil: Rivera Pomar, Rolando. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Departamento de Ciencias Básicas y Experimentales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ons, Sheila. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Experimental hut evaluation of bednets treated with an organophosphate (chlorpyrifos-methyl) or a pyrethroid (lambdacyhalothrin) alone and in combination against insecticide-resistant Anopheles gambiae and Culex quinquefasciatus mosquitoes

    Get PDF
    BACKGROUND: Pyrethroid resistant mosquitoes are becoming increasingly common in parts of Africa. It is important to identify alternative insecticides which, if necessary, could be used to replace or supplement the pyrethroids for use on treated nets. Certain compounds of an earlier generation of insecticides, the organophosphates may have potential as net treatments. METHODS: Comparative studies of chlorpyrifos-methyl (CM), an organophosphate with low mammalian toxicity, and lambdacyhalothrin (L), a pyrethroid, were conducted in experimental huts in Côte d'Ivoire, West Africa. Anopheles gambiae and Culex quinquefasciatus mosquitoes from the area are resistant to pyrethroids and organophosphates (kdr and insensitive acetylcholinesterase Ace.1(R)). Several treatments and application rates on intact or holed nets were evaluated, including single treatments, mixtures, and differential wall/ceiling treatments. RESULTS AND CONCLUSION: All of the treatments were effective in reducing blood feeding from sleepers under the nets and in killing both species of mosquito, despite the presence of the kdr and Ace.1(R )genes at high frequency. In most cases, the effects of the various treatments did not differ significantly. Five washes of the nets in soap solution did not reduce the impact of the insecticides on A. gambiae mortality, but did lead to an increase in blood feeding. The three combinations performed no differently from the single insecticide treatments, but the low dose mixture performed encouragingly well indicating that such combinations might be used for controlling insecticide resistant mosquitoes. Mortality of mosquitoes that carried both Ace.1(R )and Ace.1(S )genes did not differ significantly from mosquitoes that carried only Ace.1(S )genes on any of the treated nets, indicating that the Ace.1(R )allele does not confer effective resistance to chlorpyrifos-methyl under the realistic conditions of an experimental hut
    corecore