4 research outputs found
Algorithms for probabilistic uncertain linguistic multiple attribute group decision making based on the GRA and CRITIC method: application to location planning of electric vehicle charging stations
Electric vehicles (EVs) could be regarded as one of the most
innovative and high technologies all over the world to cope with
the fossil fuel energy resource crisis and environmental pollution
issues. As the initiatory task of EV charging station (EVCS) construction,
site selection play an important part throughout the
whole life cycle, which is deemed to be multiple attribute group
decision making (MAGDM) problem involving many experts and
many conflicting attributes. In this paper, a grey relational analysis
(GRA) method is investigated to tackle the probabilistic uncertain
linguistic MAGDM in which the attribute weights are completely
unknown information. Firstly, the definition of the expected value
is then employed to objectively derive the attribute weights
based on the CRiteria Importance Through Intercriteria Correlation
(CRITIC) method. Then, the optimal alternative is chosen by calculating
largest relative relational degree from the probabilistic
uncertain linguistic positive ideal solution (PULPIS) which considers
both the largest grey relational coefficient from the PULPIS and the
smallest grey relational coefficient from the probabilistic uncertain
linguistic negative ideal solution (PULNIS). Finally, a numerical
case for site selection of electric vehicle charging stations (EVCS) is
designed to illustrate the proposed method. The result shows the
approach is simple, effective and easy to calculate
Green supplier selection based on CODAS method in probabilistic uncertain linguistic environment
Probabilistic uncertain linguistic sets (PULTSs) have widely been used in MADM or MAGDM. The CODAS method, which is a novel MADM or MAGDM tool, aims to acquire the optimal choice which have the largest Euclidean & Hamming distances from the NIS. This paper designs the probabilistic uncertain linguistic CODAS (PUL-CODAS) method with sine entropy weight. Finally, a numerical example for green supplier selection is given and the obtained results are compared with some existing models.
First published online 05 February 202
PDHL-EDAS method for multiple attribute group decision making and its application to 3D printer selection
With the rapid development of 3D printing technology, 3D printers are manufactured based on the principle of 3D printing technology are more and more widely used in the manufacturing industry. Choosing high quality 3D printers for industrial production is of great significance to the economic growth of enterprises. In fact, it is difficult to select the most optimal 3D printers under a single and simple standard. Therefore, this paper establishes the probabilistic double hierarchy linguistic EDAS (PDHL-EDAS) method for the multiple attribute group decision making (MAGDM). Then the CRITIC model is introduced to derive objective weight and the cumulative prospect theory is leaded into obtain the cumulative weight of PDHLTS. In addition, whatās more, the PDHL-EDAS method is built and applied to the choice of high-quality 3D printer. Finally, compared with the available MAGDM methods under PDHLTS, the built method is proved to be scientific and effective.
First published online 15 December 202