26,234 research outputs found
Glucocorticoids rapidly inhibit oxytocin-stimulated adrenocorticotropin release from rat anterior pituitary cells, without modifying intracellular calcium transients
Glucocorticoid hormones suppress the secretion of ACTH evoked by secretagogues such as CRF and arginine vasopressin. In this study, we investigated the effects of glucocorticoids on ACTH release induced by oxytocin (OT) and on intracellular free calcium ion levels in corticotropes prepared from the adenohypophyses of female Wistar rats. Pulsatile additions of physiological concentration of OT (10 nM) to superfused anterior pituitary cells caused pulsatile ACTH release about 4-fold above basal secretion with similar peak amounts of ACTH during subsequent OT pulses. Exposure of the cells to corticosterone (100 nM) or to a selective glucocorticoid receptor agonist RU 28362 (100 nM) for 30 min suppressed OT-stimulated but not basal ACTH release by approximately 60%. Inhibition gradually disappeared during subsequent pulses of OT in the absence of corticosterone. Pretreatment with the selective antagonist RU 38486 (1 microM) completely blocked the inhibitory effect of corticosterone on OT-induced ACTH secretion. Changes in free cytosolic calcium levels in single cultured pituitary cells were measured using the calcium indicator Fura-2. OT caused calcium transients in corticotropes, which were identified by immunocytochemistry. They responded in a similar manner to a second OT stimulus when preincubated for 30 min with corticosterone (1 microM) or with RU 28362 (1 microM). Our data indicate that glucocorticoids, via glucocorticoid receptors, rapidly inhibit OT-stimulated ACTH secretion by corticotropes without affecting intracellular calcium transients due to OT. Therefore, we conclude that rapid inhibition of ACTH release by glucocorticoids interferes with cellular signal transduction beyond the step of calcium mobilization
A pituitary adenoma secreting high molecular weight adrenocorticotropin without evidence of Cushing's disease
Pulsatile Hormonal Signaling to Extracellular Signal-Regulated Kinase: Exploring System Sensitivity to Gonadotropin-Releasing Hormone Pulse Frequency and Width
Gonadotropin-releasing hormone (GnRH) is secreted in brief pulses that stimulate synthesis and secretion of pituitary gonadotropin hormones and thereby mediate control of reproduction. It acts via G-protein-coupled receptors to stimulate effectors, including ERK. Information could be encoded in GnRH pulse frequency, width, amplitude, or other features of pulse shape, but the relative importance of these features is unknown. Here we examine this using automated fluorescence microscopy and mathematical modeling, focusing on ERK signaling. The simplest scenario is one in which the system is linear, and response dynamics are relatively fast (compared with the signal dynamics). In this case integrated system output (ERK activation or ERK-driven transcription) will be roughly proportional to integrated input, but we find that this is not the case. Notably, we find that relatively slow response kinetics lead to ERK activity beyond the GnRH pulse, and this reduces sensitivity to pulse width. More generally, we show that the slowing of response kinetics through the signaling cascade creates a system that is robust to pulse width. We, therefore, show how various levels of response kinetics synergize to dictate system sensitivity to different features of pulsatile hormone input. We reveal the mathematical and biochemical basis of a dynamic GnRH signaling system that is robust to changes in pulse amplitude and width but is sensitive to changes in receptor occupancy and frequency, precisely the features that are tightly regulated and exploited to exert physiological control in vivo
DynPeak : An algorithm for pulse detection and frequency analysis in hormonal time series
The endocrine control of the reproductive function is often studied from the
analysis of luteinizing hormone (LH) pulsatile secretion by the pituitary
gland. Whereas measurements in the cavernous sinus cumulate anatomical and
technical difficulties, LH levels can be easily assessed from jugular blood.
However, plasma levels result from a convolution process due to clearance
effects when LH enters the general circulation. Simultaneous measurements
comparing LH levels in the cavernous sinus and jugular blood have revealed
clear differences in the pulse shape, the amplitude and the baseline. Besides,
experimental sampling occurs at a relatively low frequency (typically every 10
min) with respect to LH highest frequency release (one pulse per hour) and the
resulting LH measurements are noised by both experimental and assay errors. As
a result, the pattern of plasma LH may be not so clearly pulsatile. Yet,
reliable information on the InterPulse Intervals (IPI) is a prerequisite to
study precisely the steroid feedback exerted on the pituitary level. Hence,
there is a real need for robust IPI detection algorithms. In this article, we
present an algorithm for the monitoring of LH pulse frequency, basing ourselves
both on the available endocrinological knowledge on LH pulse (shape and
duration with respect to the frequency regime) and synthetic LH data generated
by a simple model. We make use of synthetic data to make clear some basic
notions underlying our algorithmic choices. We focus on explaining how the
process of sampling affects drastically the original pattern of secretion, and
especially the amplitude of the detectable pulses. We then describe the
algorithm in details and perform it on different sets of both synthetic and
experimental LH time series. We further comment on how to diagnose possible
outliers from the series of IPIs which is the main output of the algorithm.Comment: Nombre de pages : 35 ; Nombre de figures : 16 ; Nombre de tableaux :
Does an Analysis of the Pulsatile Secretion Pattern of Adrenocorticotropin and Cortisol Predict the Result of Transsphenoidal Surgery in Cushing’s Disease.
The endocrinological, surgical, and histological findings of patients with ACTH-dependent Cushing's disease were correlated with the pulsatile secretion pattern of ACTH and cortisol and the outcome after transsphenoidal pituitary surgery. A total of 28 patients were studied. The preoperative pulsatile secretion of ACTH and cortisol was assessed by sampling blood at 20-min intervals over 24 h. The pulsatile pattern of secretion was analyzed by the Cluster program. In 21 patients, an ACTH-secreting pituitary adenoma was identified and resected. Of these patients, 18 underwent clinical remission, and their cortisol secretion was suppressed to a normal level by low dose dexamethasone. Histological examinations in the patients with persistent disease revealed normal pituitary in 6 cases, nodular hyperplasia in 1, and ACTH-secreting pituitary adenoma in 3 cases. Analysis of the pulsatile pattern of ACTH and cortisol secretion did not reveal significant differences in timing, frequency, and/or amplitude of ACTH and cortisol pulses in normalized patients and those with persistent disease after surgery. It is concluded that analysis of the secretory pattern is not a suitable method for predicting the outcome of ranssphenoidal surgery in patients with ACTH-dependent Cushing's disease
The "Ram Effect": A "Non-Classical" Mechanism for Inducing LH Surges in Sheep
During spring sheep do not normally ovulate but exposure to a ram can induce ovulation. In some ewes an LH surge is induced immediately after exposure to a ram thus raising questions about the control of this precocious LH surge. Our first aim was to determine the plasma concentrations of oestradiol (E2) E2 in anoestrous ewes before and after the "ram effect" in ewes that had a "precocious" LH surge (starting within 6 hours), a "normal" surge (between 6 and 28h) and "late» surge (not detected by 56h). In another experiment we tested if a small increase in circulating E2 could induce an LH surge in anoestrus ewes. The concentration of E2 significantly was not different at the time of ram introduction among ewes with the three types of LH surge. "Precocious" LH surges were not preceded by a large increase in E2 unlike "normal" surges and small elevations of circulating E2 alone were unable to induce LH surges. These results show that the "precocious" LH surge was not the result of E2 positive feedback. Our second aim was to test if noradrenaline (NA) is involved in the LH response to the "ram effect". Using double labelling for Fos and tyrosine hydroxylase (TH) we showed that exposure of anoestrous ewes to a ram induced a higher density of cells positive for both in the A1 nucleus and the Locus Coeruleus complex compared to unstimulated controls. Finally, the administration by retrodialysis into the preoptic area, of NA increased the proportion of ewes with an LH response to ram odor whereas treatment with the α1 antagonist Prazosin decreased the LH pulse frequency and amplitude induced by a sexually active ram. Collectively these results suggest that in anoestrous ewes NA is involved in ram-induced LH secretion as observed in other induced ovulators
Thyroxine-binding globulin: investigation of microheterogeneity
Preparations of T4-binding globulin (TBG) from human serum was performed using only two affinity chromatography steps. Purity of the protein was demonstrated by a single band in overloaded disc and sodium dodecyl sulfate electrophoresis, equimolar binding to T4, and linearity in sedimentation velocity run. The molecular weight was calculated to be 60,000 +/- 3,000 daltons (n = 3), the sedimentation coefficient was 3.95S, and the Stokes' radius was 37 A. The amino acid composition was found to be in good agreement with the calculations of other authors. By isoelectric focussing (IEF), pure TBG showed four main bands at pH 4.25, 4.35, 4.45, and 4.55 together with several fainter bands. The N- acetylneuraminic acid (NANA) content of the four TBG bands isolated by preparative IEF was found to decrease from 10.2 mol NANA/mol TBG in the band at pH 4.25 to 4.8 mol NANA/mol TBG in the band at pH 4.55. No significant difference in the affinity constants of the TBG bands to T4 was found. The affinity constants for TBG ranged from 3.1 x 10(9) to 7.2 x 10(9) M-1. Sequential kinetic desialylation of pure TBG resulted in a progressive tendency toward one major band at pH 6.0. In native sera, microheterogeneity of TBG was detected after IEF on polyacrylamide gel plates by immunofixation. The typical TBG patterns shown by pure TBG were also found in normal subjects. Characteristic deviations from this pattern were found in the sera of females during estrogen therapy or pregnancy, where there was a gradual increase in density of the band at pH 4.25 and the appearance of an additional band at pH 4.15. In sera from patients with liver disease and elevated TBG levels, there was a fading of the acidic bands, whereas the more alkaline band at pH 4.55 was intensified. It is therefore proposed that microheterogeneity of TBG is caused by differences in NANA content and that variations of TBG patterns in native sera may reflect altered TBG synthesis or degradation. A genetically related microheterogeneity of TBG could not be demonstrated after examination of 800 sera, including 2 families with quantitative TBG deficiency
Mathematical analysis of blood flow model through channels with flexible walls
A simplified mathematical model of blood flow through flexible arteries is developed and analyzed. The resulting system of non-linear, non-homogeneous PDE\u27s is analyzed numerically using the Richtmyer Lax-Wendroff method. Numerical and theoretical results show excellent agreement suggesting that in physiologically relevant situations shocks only develop outside the domain of interest. These results suggest that when the model assumptions are satisfied the model provides sufficient regularity to yield a physically reasonable representation of flow through a flexible artery. We conclude with a discussion of future directions for this model
- …
