1,127 research outputs found

    Approximated structured pseudospectra

    Get PDF
    Pseudospectra and structured pseudospectra are important tools for the analysis of matrices. Their computation, however, can be very demanding for all but small-matrices. A new approach to compute approximations of pseudospectra and structured pseudospectra, based on determining the spectra of many suitably chosen rank-one or projected rank-one perturbations of the given matrix is proposed. The choice of rank-one or projected rank-one perturbations is inspired by Wilkinson's analysis of eigenvalue sensitivity. Numerical examples illustrate that the proposed approach gives much better insight into the pseudospectra and structured pseudospectra than random or structured random rank-one perturbations with lower computational burden. The latter approach is presently commonly used for the determination of structured pseudospectra

    Pseudospectra in non-Hermitian quantum mechanics

    Get PDF
    We propose giving the mathematical concept of the pseudospectrum a central role in quantum mechanics with non-Hermitian operators. We relate pseudospectral properties to quasi-Hermiticity, similarity to self-adjoint operators, and basis properties of eigenfunctions. The abstract results are illustrated by unexpected wild properties of operators familiar from PT-symmetric quantum mechanics.Comment: version accepted for publication in J. Math. Phys.: criterion excluding basis property (Proposition 6) added, unbounded time-evolution discussed, new reference

    On the Spectra and Pseudospectra of a Class of Non-Self-Adjoint Random Matrices and Operators

    Full text link
    In this paper we develop and apply methods for the spectral analysis of non-self-adjoint tridiagonal infinite and finite random matrices, and for the spectral analysis of analogous deterministic matrices which are pseudo-ergodic in the sense of E.B.Davies (Commun. Math. Phys. 216 (2001), 687-704). As a major application to illustrate our methods we focus on the "hopping sign model" introduced by J.Feinberg and A.Zee (Phys. Rev. E 59 (1999), 6433-6443), in which the main objects of study are random tridiagonal matrices which have zeros on the main diagonal and random ±1\pm 1's as the other entries. We explore the relationship between spectral sets in the finite and infinite matrix cases, and between the semi-infinite and bi-infinite matrix cases, for example showing that the numerical range and pp-norm \eps-pseudospectra (\eps>0, p[1,]p\in [1,\infty]) of the random finite matrices converge almost surely to their infinite matrix counterparts, and that the finite matrix spectra are contained in the infinite matrix spectrum Σ\Sigma. We also propose a sequence of inclusion sets for Σ\Sigma which we show is convergent to Σ\Sigma, with the nnth element of the sequence computable by calculating smallest singular values of (large numbers of) n×nn\times n matrices. We propose similar convergent approximations for the 2-norm \eps-pseudospectra of the infinite random matrices, these approximations sandwiching the infinite matrix pseudospectra from above and below
    corecore