11,296 research outputs found

    Generation and near-field imaging of Airy surface plasmons

    Full text link
    We demonstrate experimentally the generation and near-field imaging of nondiffracting surface waves - plasmonic Airy beams, propagating on the surface of a gold metal film. The Airy plasmons are excited by an engineered nanoscale phase grating, and demonstrate significant beam bending over their propagation. We show that the observed Airy plasmons exhibit self-healing properties, suggesting novel applications in plasmonic circuitry and surface optical manipulation.Comment: 4 pages, 4 figure

    Electrical excitation of surface plasmons

    Full text link
    We exploit a plasmon mediated two-step momentum downconversion scheme to convert low-energy tunneling electrons into propagating photons. Surface plasmon polaritons (SPPs) propagating along an extended gold nanowire are excited on one end by low-energy electron tunneling and are then converted to free-propagating photons at the other end. The separation of excitation and outcoupling proofs that tunneling electrons excite gap plasmons that subsequently couple to propagating plasmons. Our work shows that electron tunneling provides a non-optical, voltage-controlled and low-energy pathway for launching SPPs in nanostructures, such as plasmonic waveguide

    Enhancement of the transverse non-reciprocal magneto-optical effect

    Full text link
    The origin and properties of the transverse non-reciprocal magneto-optical (nMO) effect were studied. The transverse nMO effect occurs in the case when light propagates perpendicularly to the magnetic field. It was demonstrated that light can experience the transverse nMO effect only when it propagates in the vicinity of a boundary between two materials and the optical field at least in one material is evanescent. The transverse nMO effect is pronounced in the cases of surface plasmons and waveguiding modes. The magnitude of the transverse nMO effect is comparable to or greater than the magnitude of the longitudinal nMO effect. In the case of surface plasmons propagating at a boundary between the transition metal and the dielectric it is possible to magnify the transverse nMO effect and the magneto-optical figure-of-merit may increase from a few percents to above 100%. The scalar dispersion relation, which describes the transverse MO effect in cases of waveguide modes and surface plasmons propagating in a multilayer MO slab, was derived

    Coupling Quantum Emitters in WSe2 Monolayers to a Metal-Insulator-Metal Waveguide

    Full text link
    Coupling single photon emitters to surface plasmons provides a versatile ground for on chip quantum photonics. However, achieving good coupling efficiency requires precise alignment of both the position and dipole orientation of the emitter relative to the plasmonic mode. We demonstrate coupling of single emitters in the 2-D semiconductor, WSe2 self-aligned with propagating surface plasmon polaritons in silver-air-silver, metal-insulator-metal waveguides. The waveguide produces strain induced defects in the monolayer which are close to the surface plasmon mode with favorable dipole orientations for optimal coupling. We measure an average enhancement in the rate of spontaneous emission by a factor of 1.89 for coupling the single defects to the plasmonic waveguide. This architecture provides an efficient way of coupling single photon emitters to propagating plasmons which is an important step towards realizing active plasmonic circuits on chip.Comment: 8 pages, 4 figure

    A near-field study on the transition from localized to propagating plasmons on 2D nano-wedges

    Full text link
    In this manuscript we report on a near-feld study of two-dimensional plasmonic gold nano-wedges using electron energy loss spectroscopy in combination with scanning transmission electron microscopy, as well as discontinuous Galerkin time-domain computations. With increasing nano-wedge size, we observe a transition from localized surface plasmons on small nano-wedges to non-resonant propagating surface plasmon polaritons on large nano-wedges. Furthermore we demonstrate that nano-wedges with a groove cut can support localized as well as propagating plasmons in the same energy range

    Electron energy-loss spectroscopy of branched gap plasmon resonators

    Get PDF
    The miniaturization of integrated optical circuits below the diffraction limit for high-speed manipulation of information is one of the cornerstones in plasmonics research. By coupling to surface plasmons supported on nanostructured metallic surfaces, light can be confined to the nanoscale, enabling the potential interface to electronic circuits. In particular, gap surface plasmons propagating in an air gap sandwiched between metal layers have shown extraordinary mode confinement with significant propagation length. In this work, we unveil the optical properties of gap surface plasmons in silver nanoslot structures with widths of only 25 nm. We fabricate linear, branched and cross-shaped nanoslot waveguide components, which all support resonances due to interference of counter-propagating gap plasmons. By exploiting the superior spatial resolution of a scanning transmission electron microscope combined with electron energy-loss spectroscopy, we experimentally show the propagation, bending and splitting of slot gap plasmons
    corecore