453,176 research outputs found

    Programming in logic without logic programming

    Get PDF
    In previous work, we proposed a logic-based framework in which computation is the execution of actions in an attempt to make reactive rules of the form if antecedent then consequent true in a canonical model of a logic program determined by an initial state, sequence of events, and the resulting sequence of subsequent states. In this model-theoretic semantics, reactive rules are the driving force, and logic programs play only a supporting role. In the canonical model, states, actions and other events are represented with timestamps. But in the operational semantics, for the sake of efficiency, timestamps are omitted and only the current state is maintained. State transitions are performed reactively by executing actions to make the consequents of rules true whenever the antecedents become true. This operational semantics is sound, but incomplete. It cannot make reactive rules true by preventing their antecedents from becoming true, or by proactively making their consequents true before their antecedents become true. In this paper, we characterize the notion of reactive model, and prove that the operational semantics can generate all and only such models. In order to focus on the main issues, we omit the logic programming component of the framework.Comment: Under consideration in Theory and Practice of Logic Programming (TPLP

    Logic Programming for Describing and Solving Planning Problems

    Full text link
    A logic programming paradigm which expresses solutions to problems as stable models has recently been promoted as a declarative approach to solving various combinatorial and search problems, including planning problems. In this paradigm, all program rules are considered as constraints and solutions are stable models of the rule set. This is a rather radical departure from the standard paradigm of logic programming. In this paper we revisit abductive logic programming and argue that it allows a programming style which is as declarative as programming based on stable models. However, within abductive logic programming, one has two kinds of rules. On the one hand predicate definitions (which may depend on the abducibles) which are nothing else than standard logic programs (with their non-monotonic semantics when containing with negation); on the other hand rules which constrain the models for the abducibles. In this sense abductive logic programming is a smooth extension of the standard paradigm of logic programming, not a radical departure.Comment: 8 pages, no figures, Eighth International Workshop on Nonmonotonic Reasoning, special track on Representing Actions and Plannin

    Optimal Placement of Valves in a Water Distribution Network with CLP(FD)

    Full text link
    This paper presents a new application of logic programming to a real-life problem in hydraulic engineering. The work is developed as a collaboration of computer scientists and hydraulic engineers, and applies Constraint Logic Programming to solve a hard combinatorial problem. This application deals with one aspect of the design of a water distribution network, i.e., the valve isolation system design. We take the formulation of the problem by Giustolisi and Savic (2008) and show how, thanks to constraint propagation, we can get better solutions than the best solution known in the literature for the Apulian distribution network. We believe that the area of the so-called hydroinformatics can benefit from the techniques developed in Constraint Logic Programming and possibly from other areas of logic programming, such as Answer Set Programming.Comment: Best paper award at the 27th International Conference on Logic Programming - ICLP 2011; Theory and Practice of Logic Programming, (ICLP'11) Special Issue, volume 11, issue 4-5, 201
    corecore