705,421 research outputs found
Cooling slope casting to obtain thixotropic feedstock
Thixoforming, and related semi-solid processing routes for metallic alloys, require feedstock with a non-dendritic microstructure in the semi-solid state. The material then behaves in a thixotropic way in that, when it is sheared it flows and can be forced to fill a die and, when it is allowed to stand it thickens again. The New Rheocasting (the NRC process) is a recently developed semi-solid processing route. There are two versions of this route. In one, molten alloy is poured directly into a tilted mould and, through careful temperature control during cooling, a spheroidal semi-solid microstructure is achieved. The material in the mould is then upended into a shot sleeve and hence forced into a die. Alternatively, the molten alloy is poured onto a cooling slope and thence into a mould before processing. The aim of the work described in this paper was to develop understanding of the microstructural development during the initial stages of this process. The results for pouring A356 aluminium alloy via a cooling slope into a mould are presented
The effect of processing route on properties of HfNbTaTiZr high entropy alloy
High entropy alloys (HEA) have been one of the most attractive groups of materials for researchers in the last several years. Since HEAs are potential candidates for many (e.g., refractory, cryogenic, medical) applications, their properties are studied intensively. The most frequent method of HEA synthesis is arc or induction melting. Powder metallurgy is a perspective technique of alloy synthesis and therefore in this work the possibilities of synthesis of HfNbTaTiZr HEA from powders were studied. Blended elemental powders were sintered, hot isostatically pressed, and subsequently swaged using a special technique of swaging where the sample is enveloped by a titanium alloy. This method does not result in a full density alloy due to cracking during swaging. Spark plasma sintering (SPS) of mechanically alloyed powders resulted in a fully dense but brittle specimen. The most promising result was obtained by SPS treatment of gas atomized powder with low oxygen content. The microstructure of HfNbTaTiZr specimen prepared this way can be refined by high pressure torsion deformation resulting in a high hardness of 410 HV10 and very fine microstructure with grain size well below 500 nm.Web of Science1223art. no. 402
Recommended from our members
Mechanical Properties and Biological Responses of Bioactive Glass Ceramics Processed using Indirect SLS
This paper will report on research which aims to generate bone replacement components by
processing bioactive glass-ceramic powders using indirect selective laser sintering. The indirect
SLS route has been chosen as it offers the ability to tailor the shape of the implant to the
implantation site, and two bioactive glass ceramic materials have been processed through this
route: apatite-mullite and apatite-wollostanite. The results of bend tests, to investigate
mechanical properties, and in vitro and in vivo experiments to investigate biological responses of
the materials will be reported, and the suitability of completed components for implant will be
assessed.Mechanical Engineerin
Rheo-processing of an alloy specifically designed for semi-solid metal processing on the Al-Mg-Si system
Semi-solid metal (SSM) processing is a promising technology for forming alloys and composites to near-net shaped products. Alloys currently used for SSM processing are mainly conventional aluminium cast alloys. This is an obstacle to the realisation of full potential of SSM processing, since these alloys were originally designed for liquid state processing and not for semi-solid state processing. Therefore, there is a significant need for designing new alloys specifically for semi-solid state processing to fulfil its potential. In this study, thermodynamic calculations have been carried out to design alloys based on the Al-Mg-Si system for SSM processing via the ‘Rheo-route’. The suitability of a selected alloy composition has been assessed in terms of the criteria considered by the thermodynamic design process, mechanical properties and heat treatability. The newly designed alloy showed good processability with rheo-processing in terms of good control of solid fraction during processing and a reasonably large processing window. The mechanical property variation was very small and the alloy showed good potential for age hardening by T5 temper heat treatment after rheo-processing
A tree search approach for the solution of set problems using alternative relaxations
A number of alternative relaxations for the family of set problems (FSP) in general and set covering problems (SCP) in particular are introduced and discussed. These are (i) Network flow relaxation, (ii) Assignment relaxation, (iii) Shortest route relaxation, (iv) Minimum spanning tree relaxation. A unified tree search method is developed which makes use of these relaxations. Computational experience of processing a collection of test problems is reported
Atypical modulation of face-elicited saccades in autism spectrum disorder in a double-step saccade paradigm
Atypical development of face processing is a major characteristic in autism spectrum disorder (ASD), which could be due to atypical interactions between subcortical and cortical face processing. The current study investigated the saccade planning towards faces in ASD. Seventeen children with ASD and 17 typically developing (TD) children observed a pair of upright or inverted face configurations flashed sequentially in two different spatial positions. The reactive saccades of participants were recorded by eye-tracking. The results did not provide evidence of overall impairment of subcortical route in ASD, However, the upright, but not the inverted, face configuration modulated the frequency of vector sum saccades (an index of subcortical control) in TD, but not in ASD. The current results suggest that children with ASD do not have overall impairment of the subcortical route, but the subcortical route may not be specialized to face processing
Reverse k Nearest Neighbor Search over Trajectories
GPS enables mobile devices to continuously provide new opportunities to
improve our daily lives. For example, the data collected in applications
created by Uber or Public Transport Authorities can be used to plan
transportation routes, estimate capacities, and proactively identify low
coverage areas. In this paper, we study a new kind of query-Reverse k Nearest
Neighbor Search over Trajectories (RkNNT), which can be used for route planning
and capacity estimation. Given a set of existing routes DR, a set of passenger
transitions DT, and a query route Q, a RkNNT query returns all transitions that
take Q as one of its k nearest travel routes. To solve the problem, we first
develop an index to handle dynamic trajectory updates, so that the most
up-to-date transition data are available for answering a RkNNT query. Then we
introduce a filter refinement framework for processing RkNNT queries using the
proposed indexes. Next, we show how to use RkNNT to solve the optimal route
planning problem MaxRkNNT (MinRkNNT), which is to search for the optimal route
from a start location to an end location that could attract the maximum (or
minimum) number of passengers based on a pre-defined travel distance threshold.
Experiments on real datasets demonstrate the efficiency and scalability of our
approaches. To the best of our best knowledge, this is the first work to study
the RkNNT problem for route planning.Comment: 12 page
Sol–gel thermal barrier coatings: Optimization of the manufacturing route and durability under cyclic oxidation
A new promising and versatile process based on the sol–gel transformation has been developed to deposit yttria-stabilised thermal barrier coatings. The non-oriented microstructure with randomly structured pore network, resulting from the soft chemical process, is expected to show satisfactory thermo-mechanical behaviour when the TBC is cyclically oxidized. First stage of the research consists of optimizing the processing route to generate homogeneous microstructure and controlled surface roughness. The objective is to reduce, as much as possible, the size and depth of the surface cracks network inherent to the process. Indeed, the durability of the TBC when cyclically oxidized strongly depends on the sharpness of those cracks that concentrate thermo-mechanical stresses and generate detrimental propagation resulting in spallation. Cyclic oxidation tests are performed using a cyclic oxidation rig instrumented with CCD cameras to monitor in a real time basis the mechanism of crack propagation and spallation. The impact of various parameters either directly related to the processing route, e.g. the intimate microstructure of the TBC and the TBC thickness, or to the thermal loading, e.g. the oxidation temperature and the cumulated hot time, on the durability of the TBC is investigate
- …
