1,161,881 research outputs found
PMLAB: An scripting environment for process mining
In a decade of process mining research, several algorithms have been proposed to solve particular process mining tasks. At the same pace, tools have appeared both in the academic and the commercial domains. These tools have enabled the use of process mining practices to a rather limited extent. In this paper we advocate for a change in the mentality: process mining may be an exploratory discipline, and PMLAB - a Python-based scripting environment supporting this - is proposed. This demo presents the main features of the PMLAB environment.Peer ReviewedPostprint (published version
Semantic process mining tools: core building blocks
Process mining aims at discovering new knowledge based on information hidden in event logs. Two important enablers for such analysis are powerful process mining techniques and the omnipresence of event logs in today's information systems. Most information systems supporting (structured) business processes (e.g. ERP, CRM, and workflow systems) record events in some form (e.g. transaction logs, audit trails, and database tables). Process mining techniques use event logs for all kinds of analysis, e.g., auditing, performance analysis, process discovery, etc. Although current process mining techniques/tools are quite mature, the analysis they support is somewhat limited because it is purely based on labels in logs. This means that these techniques cannot benefit from the actual semantics behind these labels which could cater for more accurate and robust analysis techniques. Existing analysis techniques are purely syntax oriented, i.e., much time is spent on filtering, translating, interpreting, and modifying event logs given a particular question. This paper presents the core building blocks necessary to enable semantic process mining techniques/tools. Although the approach is highly generic, we focus on a particular process mining technique and show how this technique can be extended and implemented in the ProM framework tool
Process-oriented Iterative Multiple Alignment for Medical Process Mining
Adapted from biological sequence alignment, trace alignment is a process
mining technique used to visualize and analyze workflow data. Any analysis done
with this method, however, is affected by the alignment quality. The best
existing trace alignment techniques use progressive guide-trees to
heuristically approximate the optimal alignment in O(N2L2) time. These
algorithms are heavily dependent on the selected guide-tree metric, often
return sum-of-pairs-score-reducing errors that interfere with interpretation,
and are computationally intensive for large datasets. To alleviate these
issues, we propose process-oriented iterative multiple alignment (PIMA), which
contains specialized optimizations to better handle workflow data. We
demonstrate that PIMA is a flexible framework capable of achieving better
sum-of-pairs score than existing trace alignment algorithms in only O(NL2)
time. We applied PIMA to analyzing medical workflow data, showing how iterative
alignment can better represent the data and facilitate the extraction of
insights from data visualization.Comment: accepted at ICDMW 201
Change Mining in Adaptive Process Management Systems
The wide-spread adoption of process-aware information systems has resulted in a bulk of computerized information about real-world processes. This data can be utilized for process performance analysis as well as for process improvement. In this context process mining offers promising perspectives. So far, existing mining techniques have been applied to operational processes, i.e., knowledge is extracted from execution logs (process discovery), or execution logs are compared with some a-priori process model (conformance checking). However, execution logs only constitute one kind of data gathered during process enactment. In particular, adaptive processes provide additional information about process changes (e.g., ad-hoc changes of single process instances) which can be used to enable organizational learning. In this paper we present an approach for mining change logs in adaptive process management systems. The change process discovered through process mining provides an aggregated overview of all changes that happened so far. This, in turn, can serve as basis for all kinds of process improvement actions, e.g., it may trigger process redesign or better control mechanisms
Efficient Analysis of Pattern and Association Rule Mining Approaches
The process of data mining produces various patterns from a given data
source. The most recognized data mining tasks are the process of discovering
frequent itemsets, frequent sequential patterns, frequent sequential rules and
frequent association rules. Numerous efficient algorithms have been proposed to
do the above processes. Frequent pattern mining has been a focused topic in
data mining research with a good number of references in literature and for
that reason an important progress has been made, varying from performant
algorithms for frequent itemset mining in transaction databases to complex
algorithms, such as sequential pattern mining, structured pattern mining,
correlation mining. Association Rule mining (ARM) is one of the utmost current
data mining techniques designed to group objects together from large databases
aiming to extract the interesting correlation and relation among huge amount of
data. In this article, we provide a brief review and analysis of the current
status of frequent pattern mining and discuss some promising research
directions. Additionally, this paper includes a comparative study between the
performance of the described approaches.Comment: 14 pages, 3 figures. arXiv admin note: text overlap with
arXiv:1312.4800; and with arXiv:1109.2427 by other author
Corporate Social Responsibility and the Mining Sector in Southern Africa: A Focus on Mining in Malawi, South Africa and Zambia
The research conducted by the Bench Marks Foundation on mining in Southern provides SADC governments, mining companies and local mining community stakeholders with information and guidance on issues to consider in the process of empowerment and sustainable development through corporate social responsibility. At the same time it also alerts the global world of the human rights shortfalls that are being practised in the SADC mining communities
- …
