975,299 research outputs found
-Approximation Algorithm for Directed Steiner Tree: A Tight Quasi-Polynomial-Time Algorithm
In the Directed Steiner Tree (DST) problem we are given an -vertex
directed edge-weighted graph, a root , and a collection of terminal
nodes. Our goal is to find a minimum-cost arborescence that contains a directed
path from to every terminal. We present an -approximation algorithm for DST that runs in
quasi-polynomial-time. By adjusting the parameters in the hardness result of
Halperin and Krauthgamer, we show the matching lower bound of
for the class of quasi-polynomial-time
algorithms. This is the first improvement on the DST problem since the
classical quasi-polynomial-time approximation algorithm by
Charikar et al. (The paper erroneously claims an approximation due
to a mistake in prior work.)
Our approach is based on two main ingredients. First, we derive an
approximation preserving reduction to the Label-Consistent Subtree (LCST)
problem. The LCST instance has quasi-polynomial size and logarithmic height. We
remark that, in contrast, Zelikovsky's heigh-reduction theorem used in all
prior work on DST achieves a reduction to a tree instance of the related Group
Steiner Tree (GST) problem of similar height, however losing a logarithmic
factor in the approximation ratio. Our second ingredient is an LP-rounding
algorithm to approximately solve LCST instances, which is inspired by the
framework developed by Rothvo{\ss}. We consider a Sherali-Adams lifting of a
proper LP relaxation of LCST. Our rounding algorithm proceeds level by level
from the root to the leaves, rounding and conditioning each time on a proper
subset of label variables. A small enough (namely, polylogarithmic) number of
Sherali-Adams lifting levels is sufficient to condition up to the leaves
Duplicate Detection in Probabilistic Data
Collected data often contains uncertainties. Probabilistic databases have been proposed to manage uncertain data. To combine data from multiple autonomous probabilistic databases, an integration of probabilistic data has to be performed. Until now, however, data integration approaches have focused on the integration of certain source data (relational or XML). There is no work on the integration of uncertain (esp. probabilistic) source data so far. In this paper, we present a first step towards a concise consolidation of probabilistic data. We focus on duplicate detection as a representative and essential step in an integration process. We present techniques for identifying multiple probabilistic representations of the same real-world entities. Furthermore, for increasing the efficiency of the duplicate detection process we introduce search space reduction methods adapted to probabilistic data
Proving uniformity and independence by self-composition and coupling
Proof by coupling is a classical proof technique for establishing
probabilistic properties of two probabilistic processes, like stochastic
dominance and rapid mixing of Markov chains. More recently, couplings have been
investigated as a useful abstraction for formal reasoning about relational
properties of probabilistic programs, in particular for modeling
reduction-based cryptographic proofs and for verifying differential privacy. In
this paper, we demonstrate that probabilistic couplings can be used for
verifying non-relational probabilistic properties. Specifically, we show that
the program logic pRHL---whose proofs are formal versions of proofs by
coupling---can be used for formalizing uniformity and probabilistic
independence. We formally verify our main examples using the EasyCrypt proof
assistant
Model-checking branching-time properties of probabilistic automata and probabilistic one-counter automata
This paper studies the problem of model-checking of probabilistic automaton
and probabilistic one-counter automata against probabilistic branching-time
temporal logics (PCTL and PCTL). We show that it is undecidable for these
problems.
We first show, by reducing to emptiness problem of probabilistic automata,
that the model-checking of probabilistic finite automata against branching-time
temporal logics are undecidable. And then, for each probabilistic automata, by
constructing a probabilistic one-counter automaton with the same behavior as
questioned probabilistic automata the undecidability of model-checking problems
against branching-time temporal logics are derived, herein.Comment: Comments are welcom
Pushing undecidability of the isolation problem for probabilistic automata
This short note aims at proving that the isolation problem is undecidable for
probabilistic automata with only one probabilistic transition. This problem is
known to be undecidable for general probabilistic automata, without restriction
on the number of probabilistic transitions. In this note, we develop a
simulation technique that allows to simulate any probabilistic automaton with
one having only one probabilistic transition
Disjunctive Probabilistic Modal Logic is Enough for Bisimilarity on Reactive Probabilistic Systems
Larsen and Skou characterized probabilistic bisimilarity over reactive
probabilistic systems with a logic including true, negation, conjunction, and a
diamond modality decorated with a probabilistic lower bound. Later on,
Desharnais, Edalat, and Panangaden showed that negation is not necessary to
characterize the same equivalence. In this paper, we prove that the logical
characterization holds also when conjunction is replaced by disjunction, with
negation still being not necessary. To this end, we introduce reactive
probabilistic trees, a fully abstract model for reactive probabilistic systems
that allows us to demonstrate expressiveness of the disjunctive probabilistic
modal logic, as well as of the previously mentioned logics, by means of a
compactness argument.Comment: Aligned content with version accepted at ICTCS 2016: fixed minor
typos, added reference, improved definitions in Section 3. Still 10 pages in
sigplanconf forma
- …
