4,998,753 research outputs found
Traveling Justice: Providing Court Based Pro Se Assistance to Limited Access Communities
This Article discusses one Southern California court\u27s attempt to provide greater access to underrepresented litigants in a mixed urban and rural county northwest of Los Angeles. The Article explores Ventura County Superior Court\u27s outreach program designed to increase court access through pro se self-help services, educational outreach, specialty courts, and collaboration with social service organizations. The Article hopes to inspire others to try creative methods to improve access in their jurisdictions
Traveling Justice: Providing Court Based Pro Se Assistance to Limited Access Communities
This Article discusses one Southern California court\u27s attempt to provide greater access to underrepresented litigants in a mixed urban and rural county northwest of Los Angeles. The Article explores Ventura County Superior Court\u27s outreach program designed to increase court access through pro se self-help services, educational outreach, specialty courts, and collaboration with social service organizations. The Article hopes to inspire others to try creative methods to improve access in their jurisdictions
Giving Up the Ghost: Alaska Bar Ethics Opinion 93-1 and Undisclosed Attorney Assistance Revisited
Twenty years ago, the Alaska Bar Association adopted Ethics Opinion No. 93-1 which permitted attorneys to ghostwrite pleadings and provide other undisclosed services to pro se litigants. The goal of this ethical guidance was to enable attorneys to assist low-income individuals who could not otherwise afford representation. Ethics Opinion No. 93-1 construed ghostwriting broadly as an attorney\u27s undisclosed assistance to a pro se client whether by providing legal advice or drafting pleadings or other documents. This Note argues that, despite the moral allure of its theoretical justifications, ghostwriting is unnecessary, provides little demonstrable benefit to pro se litigants, and potentially conceals the unethical practice of law. Ghostwriting may also confuse the interactions between judges and pro se litigants in a way that works against the pro se party\u27s interests. Specifically, this Note argues that ghostwriting may cause judges to misapprehend pro se litigants\u27 legal understanding and to withdraw prematurely the solicitude those judges are otherwise required to give. Therefore, the Alaska Bar Association should revise its guidance on ghostwriting to require attorneys providing unbundled services to append their Alaska Bar Number on their submissions. This requirement would discourage abuses, enable judges effectively to manage pro se litigants, and still permit experimentation in the unbundled legal market
United States v. Scott: Sixth Amendment Protections Against Intrusions Into the Councils of the Pro Se Defendant
Tracing the dynamics of competition: Evidence from company profits
This paper proposes a simple approach to analyzing pro¯t dynam- ics which allows for time-varying persistence of pro¯ts. The time se- ries model is a simple autoregressive process where the dynamics of the persistence parameter follow an autoregressive or random walk pro- cess. Using the longest time series available on pro¯ts for six US ¯rms (Archer-Daniels-Midland , Avon, Coca Cola, Johnson & Johnson, WHX Corporation andWrigley), we analyze the dynamics of pro¯t persistence for the second half of the twentieth century.
Multiobjective optimization of electromagnetic structures based on self-organizing migration
Práce se zabývá popisem nového stochastického vícekriteriálního optimalizačního algoritmu MOSOMA (Multiobjective Self-Organizing Migrating Algorithm). Je zde ukázáno, že algoritmus je schopen řešit nejrůznější typy optimalizačních úloh (s jakýmkoli počtem kritérií, s i bez omezujících podmínek, se spojitým i diskrétním stavovým prostorem). Výsledky algoritmu jsou srovnány s dalšími běžně používanými metodami pro vícekriteriální optimalizaci na velké sadě testovacích úloh. Uvedli jsme novou techniku pro výpočet metriky rozprostření (spread) založené na hledání minimální kostry grafu (Minimum Spanning Tree) pro problémy mající více než dvě kritéria. Doporučené hodnoty pro parametry řídící běh algoritmu byly určeny na základě výsledků jejich citlivostní analýzy. Algoritmus MOSOMA je dále úspěšně použit pro řešení různých návrhových úloh z oblasti elektromagnetismu (návrh Yagi-Uda antény a dielektrických filtrů, adaptivní řízení vyzařovaného svazku v časové oblasti…).This thesis describes a novel stochastic multi-objective optimization algorithm called MOSOMA (Multi-Objective Self-Organizing Migrating Algorithm). It is shown that MOSOMA is able to solve various types of multi-objective optimization problems (with any number of objectives, unconstrained or constrained problems, with continuous or discrete decision space). The efficiency of MOSOMA is compared with other commonly used optimization techniques on a large suite of test problems. The new procedure based on finding of minimum spanning tree for computing the spread metric for problems with more than two objectives is proposed. Recommended values of parameters controlling the run of MOSOMA are derived according to their sensitivity analysis. The ability of MOSOMA to solve real-life problems from electromagnetics is shown in a few examples (Yagi-Uda and dielectric filters design, adaptive beam forming in time domain…).
Discontinuous Galerkin Methods for Solving Acoustic Problems
Parciální diferenciální rovnice hrají důležitou v inženýrských aplikacích. Často je možné tyto rovnice řešit pouze přibližně, tj. numericky. Z toho důvodu vzniklo množství diskretizačních metod pro řešení těchto rovnic. Uvedená nespojitá Galerkinova metoda se zdá jako velmi obecná metoda pro řešení těchto rovnic, především pak pro hyperbolické systémy. Naším cílem je řešit úlohy aeroakustiky, přičemž šíření akustických vln je popsáno pomocí linearizovaných Eulerových rovnic. A jelikož se jedná o hyperbolický systém, byla vybrána právě nespojitá Galerkinova metoda. Mezi nejdůležitější aspekty této metody patří schopnost pracovat s geometricky složitými oblastmi, možnost dosáhnout metody vysokého řádu a dále lokální charakter toho schématu umožnuje efektivní paralelizaci výpočtu. Nejprve uvedeme nespojitou Galerkinovu metodu v obecném pojetí pro jedno- a dvoudimenzionalní úlohy. Algoritmus následně otestujeme pro řešení rovnice advekce, která byla zvolena jako modelový případ hyperbolické rovnice. Metoda nakonec bude testována na řadě verifikačních úloh, které byly formulovány pro testování metod pro výpočetní aeroakustiku, včetně oveření okrajových podmínek, které, stejně jako v případě teorie proudění tekutin, jsou nedílnou součástí výpočetní aeroakustiky.Partial differential equations play an important role in engineering applications. It is often possible to solve these equations only approximately, i.e. numerically. Therefore number of successful discretization techniques has been developed to solve these equations. The presented discontinuous Galerkin method seems to be very general method to solve this type of equations, especially useful for hyperbolic systems. Our aim is to solve aeroacoustic problems, where propagation of acoustic waves is described using linearized Euler equations. This system of equations is indeed hyperbolic and therefore the discontinuous Galerkin method was chosen. The most important aspects of this method is ability to deal with complex geometries, possibility of high-order method and its local character enabling efficient computation parallelization. We first introduce the discontinuous Galerkin method in general for one- and two-dimensional problems. We then test the algorithm to solve advection equation, which was chosen as a model case of hyperbolic equation. The method will be finally tested using number of verification problems, which were formulated to test methods for computational equations, including verification of boundary conditions, which, similarly to computational fluid dynamics, are important part of computational aeroacoustics.
Estimation of Solutions of Differential Systems with Delayed Argument of Neutral Type
Tato disertační práce pojednává o řešení diferenciálních rovnic a systémů diferenciálních rovnic. Hlavní pozornost je věnována asymptotickým vlastnostem rovnic se zpožděním a systémů rovnic se zpožděním. V první kapitole jsou uvedeny fyzikální a technické příklady popsané pomocí diferenciálních rovnic se zpožděním a jejich systémů. Je uvedena klasifikace rovnic se zpožděním a jsou zformulovány základní pojmy stability s důrazem na druhou metodu Ljapunova. Ve druhé kapitole jsou studovány odhady řešení rovnic neutrálního typu. Třetí kapitola se zabývá systémy diferenciálních rovnic neutrálního typu. Jsou odvozeny asymptotické odhady pro řešení i pro derivace řešení. V závěru kapitoly jsou uvedeny příklady a srovnání výsledků s pracemi jiných autorů. Výpočty byly prováděny pomocí programu MATLAB. Poslední, čtvrtá kapitola, se zabývá asymptotickými vlastnostmi systémů se speciálním typem nelinearity, tzv. sektorové nelinearity. Jsou odvozeny vlastnosti řešení a derivace řešení. Základní metodou pro důkazy je v celé práci druhá Ljapunovova metoda a použití funkcionálů Ljapunova-Krasovského.This dissertation discusses the solutions to the differential equation and to systems of differential equations. The main attention is paid to study of asymptotical properties of equations with delay and systems of equations with delay. In the first chapter are given physical and technical examples described by differential equations with delay and their systems. The classification of equations with delay is given and basic notions of theory of stability are formulated (mainly with the emphasis on the Lyapunov second method). In the second chapter estimates of solutions of equations of neutral type are studied. The third chapter deals with systems of differential equations of neutral type. Asymptotic estimates for solutions and their derivatives are proved. At the end of the chapter examples and comparisons of our results and of other authors are given. The calculation were performed with the MATLAB software. Last, the fourth chapter deals with asymptotical properties of systems having a special type of nonlinearities, so called ``sector nonlinearities''. Properties and estimations of solutions and derivatives are derived. The basic tools used in the dissertation are the Lyapunov second method and functionals of Lyapunov-Krasovskii type.
- …
