3,863,637 research outputs found

    Investigation of acceptor levels and hole scattering mechanisms in p-gallium selenide by means of transport measurements under pressure

    Full text link
    The effect of pressure on acceptor levels and hole scattering mechanisms in p-GaSe is investigated through Hall effect and resistivity measurements under quasi-hydrostatic conditions up to 4 GPa. The pressure dependence of the hole concentration is interpreted through a carrier statistics equation with a single (nitrogen) or double (tin) acceptor whose ionization energies decrease under pressure due to the dielectric constant increase. The pressure effect on the hole mobility is also accounted for by considering the pressure dependencies of both the phonon frequencies and the hole-phonon coupling constants involved in the scattering rates.Comment: 13 pages, Latex, 4 ps figures. to appear in High Pressure Research 69 (1997

    Study of pressure effect on the magnetic penetration depth in MgB2_2

    Full text link
    A study of the pressure effect on the magnetic penetration depth λ\lambda in polycrystalline MgB2_{2} was performed by measuring the temperature dependence of the magnetization under an applied pressure of 0.15 and 1.13 GPa. We found that λ2\lambda^{-2} at low temperature is only slightly affected by pressure [Δλ2λ2=1.5(9)\frac{\Delta \lambda^{-2}}{\lambda^{-2}} = 1.5(9)%], in contrast to cuprate superconductors, where, in the same range of pressure, a very large effect on λ2\lambda^{-2} was found. Theoretical estimates indicate that most of the pressure effect on λ2\lambda^{-2} in MgB2_2 arises from the electron-phonon interaction.Comment: 5 pages, 2 figure

    Effect of simultaneous application of field and pressure on magnetic transitions in La0.5{_{0.5}}Ca0.5{_{0.5}}MnO3{_{3}}

    Full text link
    We study combined effect of hydrostatic pressure and magnetic field on the magnetization of La0.5{_{0.5}}Ca0.5{_{0.5}}MnO3{_{3}}. We do not observe any significant effect of pressure on the paramagnetic to ferromagnetic transition. However, pressure asymmetrically affects the thermal hysteresis across the ferro-antiferromagnetic first-order transition, which has strong field dependence. Though the supercooling (T*) and superheating (T**) temperatures decrease and the value of magnetization at 5K (M5K_{5K}) increases with pressure, T* and M5K_{5K} shows abrupt changes in tiny pressure of 0.68kbar. These anomalies enhance with field. In 7Tesla field, transition to antiferromagnetic phase disappears in 0.68kbar and M5K_{5K} show significant increase. Thereafter, increase in pressure up to \sim10kbar has no noticeable effect on the magnetization

    Anomalous pressure effect on the remanent lattice striction of a (La,Pr)1.2_{1.2}Sr1.8_{1.8}Mn2_{2}O7_{7} bilayered manganite single crystal

    Get PDF
    We have studied the pressure effect on magnetostriction, both in the abab-plane and along the c-axis, of a (La,Pr)1.2_{1.2}Sr1.8_{1.8}Mn2_{2}O7_{7} bilayered manganite single crystal over the temperature region where the field-induced ferromagnetic metal (FMM) transition takes place. For comparison, we have also examined the pressure dependence of magnetization curves at the corresponding temperatures. The applied pressure reduces the critical field of the FMM transition and it enhances the remanent magnetostriction. An anomalous pressure effect on the remanent lattice relaxation is observed and is similar to the pressure effect on the remanent magnetization along the c-axis. These findings are understood from the view point that the double-exchange interaction driven FMM state is strengthened by application of pressure.Comment: 7 pages,7 figure

    Correlations between pressure and bandwidth effects in metal-insulator transitions in manganites

    Full text link
    The effect of pressure on the metal-insulator transition in manganites with a broad range of bandwidths is investigated. A critical pressure is found at which the metal-insulator transition temperature, TMI_{MI}, reaches a maximum value in every sample studied. The origin of this universal pressure and the relation between the pressure effect and the bandwidth on the metal-insulator transition are discussed

    Thermal expansion and pressure effect in MnWO4

    Full text link
    MnWO4 has attracted attention because of its ferroelectric property induced by frustrated helical spin order. Strong spin-lattice interaction is necessary to explain ferroelectricity associated with this type of magnetic order.We have conducted thermal expansion measurements along the a, b, c axes revealing the existence of strong anisotropic lattice anomalies at T1=7.8 K, the temperature of the magnetic lock-in transition into a commensurate low-temperature (reentrant paraelectric) phase. The effect of hydrostatic pressure up to 1.8 GPa on the FE phase is investigated by measuring the dielectric constant and the FE polarization. The low- temperature commensurate and paraelectric phase is stabilized and the stability range of the ferroelectric phase is diminished under pressure.Comment: 2 pages, 3 figures. SCES conference proceedings, houston, TX, 2007. to be published in Physica
    corecore