364,656 research outputs found

    Machine Learning in Falls Prediction; A cognition-based predictor of falls for the acute neurological in-patient population

    Get PDF
    Background Information: Falls are associated with high direct and indirect costs, and significant morbidity and mortality for patients. Pathological falls are usually a result of a compromised motor system, and/or cognition. Very little research has been conducted on predicting falls based on this premise. Aims: To demonstrate that cognitive and motor tests can be used to create a robust predictive tool for falls. Methods: Three tests of attention and executive function (Stroop, Trail Making, and Semantic Fluency), a measure of physical function (Walk-12), a series of questions (concerning recent falls, surgery and physical function) and demographic information were collected from a cohort of 323 patients at a tertiary neurological center. The principal outcome was a fall during the in-patient stay (n = 54). Data-driven, predictive modelling was employed to identify the statistical modelling strategies which are most accurate in predicting falls, and which yield the most parsimonious models of clinical relevance. Results: The Trail test was identified as the best predictor of falls. Moreover, addition of any others variables, to the results of the Trail test did not improve the prediction (Wilcoxon signed-rank p < .001). The best statistical strategy for predicting falls was the random forest (Wilcoxon signed-rank p < .001), based solely on results of the Trail test. Tuning of the model results in the following optimized values: 68% (+- 7.7) sensitivity, 90% (+- 2.3) specificity, with a positive predictive value of 60%, when the relevant data is available. Conclusion: Predictive modelling has identified a simple yet powerful machine learning prediction strategy based on a single clinical test, the Trail test. Predictive evaluation shows this strategy to be robust, suggesting predictive modelling and machine learning as the standard for future predictive tools

    Modelling and simulation framework for reactive transport of organic contaminants in bed-sediments using a pure java object - oriented paradigm

    Get PDF
    Numerical modelling and simulation of organic contaminant reactive transport in the environment is being increasingly relied upon for a wide range of tasks associated with risk-based decision-making, such as prediction of contaminant profiles, optimisation of remediation methods, and monitoring of changes resulting from an implemented remediation scheme. The lack of integration of multiple mechanistic models to a single modelling framework, however, has prevented the field of reactive transport modelling in bed-sediments from developing a cohesive understanding of contaminant fate and behaviour in the aquatic sediment environment. This paper will investigate the problems involved in the model integration process, discuss modelling and software development approaches, and present preliminary results from use of CORETRANS, a predictive modelling framework that simulates 1-dimensional organic contaminant reaction and transport in bed-sediments

    TREEOME: A framework for epigenetic and transcriptomic data integration to explore regulatory interactions controlling transcription

    Get PDF
    Motivation: Predictive modelling of gene expression is a powerful framework for the in silico exploration of transcriptional regulatory interactions through the integration of high-throughput -omics data. A major limitation of previous approaches is their inability to handle conditional and synergistic interactions that emerge when collectively analysing genes subject to different regulatory mechanisms. This limitation reduces overall predictive power and thus the reliability of downstream biological inference. Results: We introduce an analytical modelling framework (TREEOME: tree of models of expression) that integrates epigenetic and transcriptomic data by separating genes into putative regulatory classes. Current predictive modelling approaches have found both DNA methylation and histone modification epigenetic data to provide little or no improvement in accuracy of prediction of transcript abundance despite, for example, distinct anti-correlation between mRNA levels and promoter-localised DNA methylation. To improve on this, in TREEOME we evaluate four possible methods of formulating gene-level DNA methylation metrics, which provide a foundation for identifying gene-level methylation events and subsequent differential analysis, whereas most previous techniques operate at the level of individual CpG dinucleotides. We demonstrate TREEOME by integrating gene-level DNA methylation (bisulfite-seq) and histone modification (ChIP-seq) data to accurately predict genome-wide mRNA transcript abundance (RNA-seq) for H1-hESC and GM12878 cell lines. Availability: TREEOME is implemented using open-source software and made available as a pre-configured bootable reference environment. All scripts and data presented in this study are available online at http://sourceforge.net/projects/budden2015treeome/.Comment: 14 pages, 6 figure

    Gaussian process model based predictive control

    Get PDF
    Gaussian process models provide a probabilistic non-parametric modelling approach for black-box identification of non-linear dynamic systems. The Gaussian processes can highlight areas of the input space where prediction quality is poor, due to the lack of data or its complexity, by indicating the higher variance around the predicted mean. Gaussian process models contain noticeably less coefficients to be optimized. This paper illustrates possible application of Gaussian process models within model-based predictive control. The extra information provided within Gaussian process model is used in predictive control, where optimization of control signal takes the variance information into account. The predictive control principle is demonstrated on control of pH process benchmark

    Wiener modelling and model predictive control for wastewater applications

    Get PDF
    The research presented in this paper aims to demonstrate the application of predictive control to an integrated wastewater system with the use of the wiener modeling approach. This allows the controlled process, dissolved oxygen, to be considered to be composed of two parts: the linear dynamics, and a static nonlinearity, thus allowing control other than common approaches such as gain-scheduling, or switching, for series of linear controllers. The paper discusses various approaches to the modelling required for control purposes, and the use of wiener modelling for the specific application of integrated waste water control. This paper demonstrates this application and compares with that of another nonlinear approach, fuzzy gain-scheduled control

    Knowledge discovery for friction stir welding via data driven approaches: Part 2 – multiobjective modelling using fuzzy rule based systems

    Get PDF
    In this final part of this extensive study, a new systematic data-driven fuzzy modelling approach has been developed, taking into account both the modelling accuracy and its interpretability (transparency) as attributes. For the first time, a data-driven modelling framework has been proposed designed and implemented in order to model the intricate FSW behaviours relating to AA5083 aluminium alloy, consisting of the grain size, mechanical properties, as well as internal process properties. As a result, ‘Pareto-optimal’ predictive models have been successfully elicited which, through validations on real data for the aluminium alloy AA5083, have been shown to be accurate, transparent and generic despite the conservative number of data points used for model training and testing. Compared with analytically based methods, the proposed data-driven modelling approach provides a more effective way to construct prediction models for FSW when there is an apparent lack of fundamental process knowledge

    Development and evaluation of land use regression models for black carbon based on bicycle and pedestrian measurements in the urban environment

    Get PDF
    Land use regression (LUR) modelling is increasingly used in epidemiological studies to predict air pollution exposure. The use of stationary measurements at a limited number of locations to build a LUR model, however, can lead to an overestimation of its predictive abilities. We use opportunistic mobile monitoring to gather data at a high spatial resolution to build LUR models to predict annual average concentrations of black carbon (BC). The models explain a significant part of the variance in BC concentrations. However, the overall predictive performance remains low, due to input uncertainty and lack of predictive variables that can properly capture the complex characteristics of local concentrations. We stress the importance of using an appropriate cross-validation scheme to estimate the predictive performance of the model. By using independent data for the validation and excluding those data also during variable selection in the model building procedure, overly optimistic performance estimates are avoided. (C) 2017 Elsevier Ltd. All rights reserved
    • 

    corecore