676,235 research outputs found
Predictive User Modeling with Actionable Attributes
Different machine learning techniques have been proposed and used for
modeling individual and group user needs, interests and preferences. In the
traditional predictive modeling instances are described by observable
variables, called attributes. The goal is to learn a model for predicting the
target variable for unseen instances. For example, for marketing purposes a
company consider profiling a new user based on her observed web browsing
behavior, referral keywords or other relevant information. In many real world
applications the values of some attributes are not only observable, but can be
actively decided by a decision maker. Furthermore, in some of such applications
the decision maker is interested not only to generate accurate predictions, but
to maximize the probability of the desired outcome. For example, a direct
marketing manager can choose which type of a special offer to send to a client
(actionable attribute), hoping that the right choice will result in a positive
response with a higher probability. We study how to learn to choose the value
of an actionable attribute in order to maximize the probability of a desired
outcome in predictive modeling. We emphasize that not all instances are equally
sensitive to changes in actions. Accurate choice of an action is critical for
those instances, which are on the borderline (e.g. users who do not have a
strong opinion one way or the other). We formulate three supervised learning
approaches for learning to select the value of an actionable attribute at an
instance level. We also introduce a focused training procedure which puts more
emphasis on the situations where varying the action is the most likely to take
the effect. The proof of concept experimental validation on two real-world case
studies in web analytics and e-learning domains highlights the potential of the
proposed approaches
Motif Discovery through Predictive Modeling of Gene Regulation
We present MEDUSA, an integrative method for learning motif models of
transcription factor binding sites by incorporating promoter sequence and gene
expression data. We use a modern large-margin machine learning approach, based
on boosting, to enable feature selection from the high-dimensional search space
of candidate binding sequences while avoiding overfitting. At each iteration of
the algorithm, MEDUSA builds a motif model whose presence in the promoter
region of a gene, coupled with activity of a regulator in an experiment, is
predictive of differential expression. In this way, we learn motifs that are
functional and predictive of regulatory response rather than motifs that are
simply overrepresented in promoter sequences. Moreover, MEDUSA produces a model
of the transcriptional control logic that can predict the expression of any
gene in the organism, given the sequence of the promoter region of the target
gene and the expression state of a set of known or putative transcription
factors and signaling molecules. Each motif model is either a -length
sequence, a dimer, or a PSSM that is built by agglomerative probabilistic
clustering of sequences with similar boosting loss. By applying MEDUSA to a set
of environmental stress response expression data in yeast, we learn motifs
whose ability to predict differential expression of target genes outperforms
motifs from the TRANSFAC dataset and from a previously published candidate set
of PSSMs. We also show that MEDUSA retrieves many experimentally confirmed
binding sites associated with environmental stress response from the
literature.Comment: RECOMB 200
Predictive Analysis for Social Processes II: Predictability and Warning Analysis
This two-part paper presents a new approach to predictive analysis for social
processes. Part I identifies a class of social processes, called positive
externality processes, which are both important and difficult to predict, and
introduces a multi-scale, stochastic hybrid system modeling framework for these
systems. In Part II of the paper we develop a systems theory-based,
computationally tractable approach to predictive analysis for these systems.
Among other capabilities, this analytic methodology enables assessment of
process predictability, identification of measurables which have predictive
power, discovery of reliable early indicators for events of interest, and
robust, scalable prediction. The potential of the proposed approach is
illustrated through case studies involving online markets, social movements,
and protest behavior
- …
