92,537 research outputs found

    Effects of introduced trout predation on non-diadromous galaxiid fish populations across invaded riverscapes

    Get PDF
    Abstract We assessed the landscape-scale effect of predation pressure from trout on the population integrity and distributions of non-diadromous galaxiids in high-country streams of the South Island, New Zealand. The effects of trout (brown trout, Salmo trutta, and rainbow trout, Oncorhynchus mykiss) on two widespread species, the Canterbury galaxias (Galaxias vulgaris Stokell) and the alpine galaxias (G. paucispondylus Stokell) were assessed. Experiments confirmed that both species were vulnerable to trout predation and that habitat (size and disturbance regime) may be a factor in local co-occurrence. Quantitative electrofishing surveys indicated that G. paucispondylus distributions were less affected by trout than G. vulgaris distributions and that the species’ range was limited by temperature. Trout created demographic sinks for G. vulgaris across most invaded reaches, while refuge populations in streams above barriers to trout acted as demographic sources for this species. G. vulgaris was consistently absent from small, stable stream reaches far from sources, indicating that trout predation pressure and propagule pressure (driven by immigration from sources) interact to drive local G. vulgaris persistence in trout-invaded reaches. Predation pressure is likely to be highest in areas where infrequent flooding allows high densities of large trout (> 150 mm FL) to occur and where there are few refugia for galaxiids. A spatial model was developed to predict exclusion of galaxiids by trout across invaded networks. If used appropriately, the model could be used to find new refuge populations of non-diadromous galaxiids and to aid planning of active rehabilitation of trout-invaded river networks

    Predators do not spill over from forest fragments to maize fields in a landscape mosaic in central Argentina

    Get PDF
    South America is undergoing a rapid and large scale conversion of natural habitats to cultivated land. Ecosystem services (ESs) still remain important but their level and sustainability are not known. We quantified predation intensity in an Argentinian agricultural landscape containing remnants of the original chaco serrano forest by using artificial sentinel prey. We sought to identify the main predators, and the effect of landscape configuration and maize phenology on predation pressure by invertebrate and vertebrate predators in this landscape. The most common predators were chewing insects (50.4% predation events), birds (22.7%), and ants (17.5%). Overall predation rates in forest fragments (41.6% d-1) were significantly higher than in the surrounding maize fields (21.5% d-1). Invertebrate predation was higher inside and at the edge of forest fragments than within fields, and did not change with increasing distance from a fragment edge, indicating a lack of spillover from the native habitat remnants to the cultivated matrix at the local scale. Distance from a continuous forest had a positive impact on predation by invertebrates and a negative impact on vertebrate predation.Fil: Ferrante, Marco. Aarhus University. Flakkebjerg Research Centre. Department of Agroecology; DinamarcaFil: González, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Gabor L., Lovei. Aarhus University. Flakkebjerg Research Centre. Department of Agroecology; Dinamarc

    Environmental conditions during early life accelerate the rate of senescence in a short-lived passerine bird

    Get PDF
    Environmental conditions experienced in early life may shape subsequent phenotypic traits including life history. We investigated how predation risk caused by domestic cats (Felis silvestris catus) and local breeding density affected patterns of reproductive and survival senescence in Barn Swallows (Hirundo rustica) breeding semicolonially in Denmark. We recorded the abundance of cats and the number of breeding pairs at 39 breeding sites during 24 years and related these to age-specific survival rate and reproductive senescence to test predictions of the life history theory of senescence. We found evidence for actuarial senescence for the first time in this species. Survival rate increased until reaching a plateau in midlife and then decreased later. We also found that survival rate was higher for males than females. Local breeding density or predation risk did not affect survival as predicted by theory. Barn Swallows with short lives did not invest more in reproduction in early life, inconsistent with expectations for trade-offs between reproduction and survival as theory suggests. However, we found that the rate of reproductive decline during senescence was steeper for individuals exposed to intense competition, and predation pressure accelerated the rate of reproductive senescence, but only in sites with many breeding pairs. These latter results are in accordance with one of the predictions suggested by the life history theory of aging. These results emphasize the importance of considering intraspecific competition and interspecific interactions such as predation when analyzing reproductive and actuarial senescence

    Predation risk reduces a female preference for heterospecific males in the green swordtail

    Get PDF
    The presence of a predator can result in the alteration, loss or reversal of a mating preference. Under predation risk, females often change their initial preference for conspicuous males, favouring less flashy males to reduce the risk of being detected by predators. Previous studies on predator-induced plasticity in mate preferences have given females a choice between more and less conspicuous conspecific males. However, in species that naturally hybridize, it is also possible that females might choose an inconspicuous heterospecific male over a conspicuous conspecific male under predation risk. Our study addresses this question using the green swordtail (Xiphophorus helleri) and the southern platyfish (Xiphophorus maculatus), which are sympatric in the wild. We hypothesized that X. helleri females would prefer the sworded conspecific males in the absence of a predator but favour the less conspicuous, swordless, heterospecific males in the presence of a predator. Contrary to our expectation, females associated more with the heterospecific male than the conspecific male in the control (no predator) treatment, and they were non-choosy in the predator treatment. This might reflect that females were attracted to the novel male phenotype when there was no risk of predation but became more neophobic after predator exposure. Regardless of the underlying mechanism, our results suggest that predation pressure may affect female preferences for conspecific versus heterospecific males. We also found striking within-population, between-individual variation in behavioural plasticity: females differed in the strength and direction of their preferences, as well as in the extent to which they altered their preferences in response to changes in perceived predation risk. Such variation in female preferences for heterospecific males could potentially lead to temporal and spatial variation in hybridization rates in the wild

    Phenotypic and social effects on behavioural trade-offs in Eurasian perch

    Get PDF
    Trading between conflicting demands is a fundamental part in how animals interact with its environment and social surrounding. Knowledge of what factors that are affecting behavioural decisions is central in our understanding of animal adaptation and ecology. This thesis summarizes a series of behavioural experiments investigating how animals compromise behaviours depending on environmental background and context. The focus is on within- and between-population variation in risk-taking and social trade-offs in young of the year and one year old Eurasian perch. Perch behaviour was quantified by observational studies in aquaria, using standardized assays that captured perch boldness and sociability. Perch from different predation backgrounds were compared in common garden experiments, as well as in multi-year inter-population comparisons, to study influence of predation experience on risk-taking phenotype. Results demonstrate predation as an important factor underlying how perch balance risk. Variation in risk-taking phenotype could to a large extent be explained by individual differences in experience of predation, rather than by fixed inherited responses caused by divergent selection. Experience of predation had long lasting effects on perch boldness, but perch were also able to quickly adjust phenotype in response to current conditions, indicating temporal flexibility in how experience shape behaviour. Social context influenced behaviour, with fish being bolder in larger group, and showing higher behavioural conformity. Occurrence of consistent individual variation in risk-taking and social behaviour could be established, confirming the existence of a personality dimension in perch behaviour. The thesis concludes that variation in how perch trade-off conflicting behaviours exists at multiple levels, from population to individual. Behavioural plasticity, even in strongly fitness related traits, is evident, although potential behavioural constraints in the form of consistent individuality is also present

    Predator confusion is sufficient to evolve swarming behavior

    Full text link
    Swarming behaviors in animals have been extensively studied due to their implications for the evolution of cooperation, social cognition, and predator-prey dynamics. An important goal of these studies is discerning which evolutionary pressures favor the formation of swarms. One hypothesis is that swarms arise because the presence of multiple moving prey in swarms causes confusion for attacking predators, but it remains unclear how important this selective force is. Using an evolutionary model of a predator-prey system, we show that predator confusion provides a sufficient selection pressure to evolve swarming behavior in prey. Furthermore, we demonstrate that the evolutionary effect of predator confusion on prey could in turn exert pressure on the structure of the predator's visual field, favoring the frontally oriented, high-resolution visual systems commonly observed in predators that feed on swarming animals. Finally, we provide evidence that when prey evolve swarming in response to predator confusion, there is a change in the shape of the functional response curve describing the predator's consumption rate as prey density increases. Thus, we show that a relatively simple perceptual constraint--predator confusion--could have pervasive evolutionary effects on prey behavior, predator sensory mechanisms, and the ecological interactions between predators and prey.Comment: 11 pages, 6 figures. Supplementary information (including video files S1 and S5) in ancillary material. Videos S2-S4 are available from the authors upon reques

    Effects of climate on size structure and functioning of aquatic food webs

    Get PDF
    In aquatic food webs, the role of body size is notoriously strong. It is also well known that temperature has an effect on body size. For instance, Bergmann’s rule states that body size increases from warm to cold climates. This thesis addresses the question how climate shapes the size structure of fish and zooplankton communities, and how this affects the strength of the trophic cascade from fish to plankton. I combine three different approaches: a space-for-time substitution study of data from the 83 shallow lakes distributed along a latitudinal gradient in South America, simple mathematical models to explore climate effects on the dynamics of trophic interactions, and an experimental analysis of trophic interactions using outdoor mesocosms
    corecore