2,936 research outputs found
Core promoter: A critical region where the hepatitis B virus makes decisions
The core promoter (CP) of the viral genome plays an important role for hepatitis B virus (HBV) replication as it directs initiation of transcription for the synthesis of both the precore and pregenomic (pg) RNAs. The CP consists of the upper regulatory region and the basal core promoter (BCP). The CP overlaps with the 3’-end of the X open reading frames and the 5’-end of the precore region, and contains cis-acting elements that can independently direct transcription of the precore mRNA and pgRNA. Its transcription regulation is under strict control of viral and cellular factors. Even though this regulatory region exhibits high sequence conservation, when variations appear, they may contribute to the persistence of HBV within the host, leading to chronic infection and cirrhosis, and eventually, hepatocellular carcinoma. Among CP sequence variations, those occurring at BCP may dysregulate viral gene expression with emphasis in the hepatitis B e antigen, and contribute to disease progression. In this review these molecular aspects and pathologic topics of core promoter are deeply evaluated.Fil: Quarleri, Jorge Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; Argentin
Recommended from our members
Targeting of the hepatitis B virus precore protein to the endoplasmic reticulum membrane: after signal peptide cleavage translocation can be aborted and the product released into the cytoplasm.
The major hepatitis B virus (HBV) core protein is a viral structural protein involved in nucleic acid binding. Its coding sequence contains an extension of 29 codons (the "precore" region) at the amino terminus of the protein which is present in a fraction of the viral transcripts. This region is evolutionarily conserved among mammalian and avian HBVs, suggesting it has functional importance, although at least for duck HBV it has been shown to be nonessential for replication of infectious virions. Using in vitro assays for protein translocation across the endoplasmic reticulum membrane, we found that the precore region of the HBV genome encodes a signal sequence. This signal sequence was recognized by signal recognition particle, which targeted the nascent precore protein to the endoplasmic reticulum membrane with efficiencies comparable to those of other mammalian secretory proteins. A 19-amino acid signal peptide was removed by signal peptidase on the lumenal side of the microsomal membrane, generating a protein similar to the HBV major core protein, but containing 10 additional amino acids from the precore region at its amino terminus. Surprisingly, we found that 70-80% of this signal peptidase-cleaved product was localized on the cytoplasmic side of the microsomal vesicles and was not associated with the membranes. We conclude that translocation was aborted by an unknown mechanism, then the protein disengaged from the translocation machinery and was released back into the cytoplasm. Thus, a cytoplasmically disposed protein was created whose amino terminus resulted from signal peptidase cleavage. The remaining 20-30% appeared to be completely translocated into the lumen of the microsomes. A deletion mutant lacking the carboxy-terminal nucleic acid binding domain of the precore protein was similarly partitioned between the lumen of the microsomes and the cytoplasmic compartment, indicating that this highly charged domain is not responsible for the aborted translocation. We discuss the implications of our findings for the protein translocation process and suggest a possible role in the virus life cycle
Correlation between hepatitis B G1896A precore mutations and HBeAg in chronic HBV patients
Background: Hepatitis B virus (HBV) infection is an important health concern worldwide, with critical outcomes. Hepatitis B e antigen (HBeAg) negative chronic hepatitis B is frequently caused by a mutation (G1896A) in the hepatitis B virus (HBV) precore (PC) reading frame, which creates a stop codon, causing premature termination of the HBe protein. Objectives: This study aimed to investigate the G1896A PC mutation and its effect on HBeAg detection in chronic HBV patients. Patients and Methods: In this study, 120 chronic HBV patients neither vaccinated or who had benefited from immunoglobulin therapy, were recruited. The HBV-DNA was extracted from plasma and polymerase chain reaction (PCR) was performed. Positive PCR products were subjected to automated sequencing. The HBV serological markers hepatitis B s antigen (HBsAg), HBeAg were tested. Results: One hundred out of 120 (83.3%) patients were HBeAg negative and 100% were HBsAg positive. The comparison of nucleotide sequences with the reference sequence (Accession number: AB033559) in HBeAg negative patients showed that there was a high rate of mutations in G1896A (93.18%). Conclusions: This study indicates that the rate of G1896A mutation at the PC region among HBeAg negative patients, in the Golestan province of Iran, was similar to the average rate encountered in other parts of Iran. The PC stop codon mutation was detected in 93.18% of HBeAg negative patients. Further studies with larger sample sizes are required to elucidate the exact role of these mutations in the clinical course of chronic HBV infection. © 2015, Ahvaz Jundishapur University of Medical Sciences
Clinical, epidemiological and virological features of acute hepatitis B in Italy
Purpose To evaluate the association of hepatitis B virus
(HBV) genotypes, basal core promoter (BCP)/precore (PC)
and S gene mutations with the clinical-epidemiological
characteristics of acute hepatitis B (AHB) in Italy.
Methods During July 2005–January 2007, 103 symptomatic AHB patients were enrolled and prospectively followed up at 15 national hospitals. HBV genotypes, BCP/
PC and S gene variants were determined by nested-PCR
and direct sequence analysis.
Results Genotype D, A and F were detected in 49, 45
and 6 % of patients, respectively. BCP, PC, and BCP
plus PC variants were found in 3.1, 11.3 and 7.2 % of
patients, respectively. At enrollment, 68.3 % of patients
were hepatitis B e antigen (HBeAg)-positive and 31.7 %
HBeAg-negative. BCP/PC mutations were more common in HBeAg-negative than in HBeAg-positive patients
(p < 0.0001). Compared to genotype D patients, those harboring non-D genotypes were more frequently males
(p = 0.023), HBeAg-positive (p < 0.001), had higher
bilirubin (p = 0.014) and viremia (p = 0.034) levels and
less frequently carried BCP/PC mutations (p < 0.001).
Non-D genotype patients more often were from Central Italy (p = 0.001) and reported risky sexual exposure
(p = 0.021). Two patients had received vaccination before
AHB: one harbored genotype F; the other showed a S gene
mutation. Four patients developed fulminant AHB; mutations were found in 2 of 3 patients who underwent BCP/
PC sequencing. After a 6-month follow-up, only 2 (2.8 %)
patients developed persistent infection.
Conclusion AHB by non-D genotypes is increasing in
Italy and is associated with risky sexual exposure. The ability of some genotypes to cause persistent and/or severe
infection in Italy warrants larger studies for clarificatio
A sharp threshold for random graphs with a monochromatic triangle in every edge coloring
Let be the set of all finite graphs with the Ramsey property that
every coloring of the edges of by two colors yields a monochromatic
triangle. In this paper we establish a sharp threshold for random graphs with
this property. Let be the random graph on vertices with edge
probability . We prove that there exists a function with
, as tends to infinity
Pr[G(n,(1-\eps)\hat c/\sqrt{n}) \in \R ] \to 0 and Pr [ G(n,(1+\eps)\hat
c/\sqrt{n}) \in \R ] \to 1. A crucial tool that is used in the proof and is
of independent interest is a generalization of Szemer\'edi's Regularity Lemma
to a certain hypergraph setting.Comment: 101 pages, Final version - to appear in Memoirs of the A.M.
Egalitarianism in Multi-Choice Games
In this paper we introduce the equal division core for arbitrary multi-choice games and the constrained egalitarian solution for con- vex multi-choice games, using a multi-choice version of the Dutta-Ray algorithm for traditional convex games. These egalitarian solutions for multi-choice games have similar properties as their counterparts for traditional cooperative games. On the class of convex multi-choice games, we axiomatically characterize the constrained egalitarian solu- tion.Multi-choice games;Convex games;Equal division core;Constrained egalitarian solution
A new approach to the core and Weber set of multichoice games
Multichoice games have been introduced by Hsiao and Raghavan as a generalization of classical cooperative games. An important notion in cooperative game theory is the core of the game, as it contains the rational imputations for players. We propose two definitions for the core of a multichoice game, the first one is called the precore and is a direct generalization of the classical definition. We show that the precore coincides with the definition proposed by Faigle, and that the set of imputations may be unbounded, which makes its application questionable. A second definition is proposed, imposing normalization at each level, causing the core to be a convex compact set. We study its properties, introducing balancedness and marginal worth vectors, and defining the Weber set and the pre-Weber set. We show that the classical properties of inclusion of the (pre)core into the (pre)-Weber set as well as their coincidence in the convex case remain valid. A last section makes a comparison with the core defined by van den Nouweland et al.multichoice game ; lattice ; core
Efficient processing of an antigenic sequence for presentation by MHC class I molecules depends on its neighboring residues in the protein
Processing of endogenously synthesized proteins generates short peptides that are presented by MHC class I molecules to CD8 T lymphocytes. Here it is documented that not only the sequence of the presented peptide but also the residues by which it is flanked in the protein determine the efficiency of processing and presentation. This became evident when a viral sequence of proven antigenicity was inserted at different positions into an unrelated carrier protein. Not different peptides, but different amounts of the antigenic insert itself were retrieved by isolation of naturally processed peptides from cells expressing the different chimeric proteins. Low yield of antigenic peptide from an unfavorable integration site could be overcome by flanking the insert with oligo-alanine to space it from disruptive neighboring sequences. Notably, the degree of protection against lethal virus disease related directly to the amount of naturally processed antigenic peptide
Mutations in pre-core and basal-core promoter regions of hepatitis B virus in chronic HBV patients from Golestan, Iran
Objective(s): It has been reported that the mutation of the pre-core (PC) and basal-core promoter (BCP) may play an important role in the development of HBV-related hepatocellular carcinoma (HCC). In this study the PC and BCP mutations were investigated in chronic HBV patients. Materials and Methods: In this study, 120 chronic HBV patients from Golestan, Northeast of Iran who were not vaccinated against HBV, were recruited from the year 2008 to 2012. HBV-DNA extraction from plasma and PCR were performed and positive PCR products were subjected to automated sequencing. Results: One hundred out of 120 (83.3%) patients were HBeAg negative. Comparison of our nucleotide sequences with reference sequence showed high rate mutation in BCP and PC region (96.66%). Frame shift mutation was found in 78 (65%) of patients in BCP region, among them 8 (6.6%) patients showed mutation in PC region. Conclusion: Our results demonstrated high rate of mutations in BCP and PC regions among HBV chronic patients in Northeast of Iran
Recommended from our members
3.5Å cryoEM structure of hepatitis B virus core assembled from full-length core protein.
The capsid shell of infectious hepatitis B virus (HBV) is composed of 240 copies of a single protein called HBV core antigen (HBc). An atomic model of a core assembled from truncated HBc was determined previously by X-ray crystallography. In an attempt to obtain atomic structural information of HBV core in a near native, non-crystalline environment, we reconstructed a 3.5Å-resolution structure of a recombinant core assembled from full-length HBc by cryo electron microscopy (cryoEM) and derived an atomic model. The structure shows that the 240 molecules of full-length HBc form a core with two layers. The outer layer, composed of the N-terminal assembly domain, is similar to the crystal structure of the truncated HBc, but has three differences. First, unlike the crystal structure, our cryoEM structure shows no disulfide bond between the Cys61 residues of the two subunits within the dimer building block, indicating such bond is not required for core formation. Second, our cryoEM structure reveals up to four more residues in the linker region (amino acids 140-149). Third, the loops in the cryoEM structures containing this linker region in subunits B and C are oriented differently (~30° and ~90°) from their counterparts in the crystal structure. The inner layer, composed of the C-terminal arginine-rich domain (ARD) and the ARD-bound RNAs, is partially-ordered and connected with the outer layer through linkers positioned around the two-fold axes. Weak densities emanate from the rims of positively charged channels through the icosahedral three-fold and local three-fold axes. We attribute these densities to the exposed portions of some ARDs, thus explaining ARD's accessibility by proteases and antibodies. Our data supports a role of ARD in mediating communication between inside and outside of the core during HBV maturation and envelopment
- …
