3,067 research outputs found
Computer simulation of preflight blood volume reduction as a countermeasure to fluid shifts in space flight
Fluid shifts in weightlessness may cause a central volume expansion, activating reflexes to reduce the blood volume. Computer simulation was used to test the hypothesis that preadaptation of the blood volume prior to exposure to weightlessness could counteract the central volume expansion due to fluid shifts and thereby attenuate the circulatory and renal responses resulting in large losses of fluid from body water compartments. The Guyton Model of Fluid, Electrolyte, and Circulatory Regulation was modified to simulate the six degree head down tilt that is frequently use as an experimental analog of weightlessness in bedrest studies. Simulation results show that preadaptation of the blood volume by a procedure resembling a blood donation immediately before head down bedrest is beneficial in damping the physiologic responses to fluid shifts and reducing body fluid losses. After ten hours of head down tilt, blood volume after preadaptation is higher than control for 20 to 30 days of bedrest. Preadaptation also produces potentially beneficial higher extracellular volume and total body water for 20 to 30 days of bedrest
Language: The missing selection pressure
Human beings are talkative. What advantage did their ancestors find in
communicating so much? Numerous authors consider this advantage to be "obvious"
and "enormous". If so, the problem of the evolutionary emergence of language
amounts to explaining why none of the other primate species evolved anything
even remotely similar to language. What I propose here is to reverse the
picture. On closer examination, language resembles a losing strategy. Competing
for providing other individuals with information, sometimes striving to be
heard, makes apparently no sense within a Darwinian framework. At face value,
language as we can observe it should never have existed or should have been
counter-selected. In other words, the selection pressure that led to language
is still missing. The solution I propose consists in regarding language as a
social signaling device that developed in a context of generalized insecurity
that is unique to our species. By talking, individuals advertise their
alertness and their ability to get informed. This hypothesis is shown to be
compatible with many characteristics of language that otherwise are left
unexplained.Comment: 34 pages, 3 figure
Regional development: contribution of evolutionary biology
This paper tries to set out a potential of application of some evolutionary biology concepts to the issue of regional development. The objective is to show that employment of these concepts or at least inspiration by them may enrich some theories of regional development and enhance the explanatory framework of regional evolution.First, the views of institutional economics and geography on evolutionary biology contribution are summarised, then some evolutionary concepts are applied to the path dependence concept e. g., in effort to find a possible way of classification of this phenomenon. However, we discuss some other evolutionary concepts, as coevolution, adaptation, preadaption, general approach to comprehension of evolution, etc. in connexion with some chosen theories and problems of regional development.Regional development ; evolutionary biology ; path dependence ; theories of regional development
Visual adaptation to goal-directed hand actions
Prolonged exposure to visual stimuli, or adaptation, often results in an adaptation “aftereffect” which can profoundly distort our perception of subsequent visual stimuli. This technique has been commonly used to investigate mechanisms underlying our perception of simple visual stimuli, and more recently, of static faces. We tested whether humans would adapt to movies of hands grasping and placing different weight objects. After adapting to hands grasping light or heavy objects, subsequently perceived objects appeared relatively heavier, or lighter, respectively. The aftereffects increased logarithmically with adaptation action repetition and decayed logarithmically with time. Adaptation aftereffects also indicated that perception of actions relies predominantly on view-dependent mechanisms. Adapting to one action significantly influenced the perception of the opposite action. These aftereffects can only be explained by adaptation of mechanisms that take into account the presence/absence of the object in the hand. We tested if evidence on action processing mechanisms obtained using visual adaptation techniques confirms underlying neural processing. We recorded monkey superior temporal sulcus (STS) single-cell responses to hand actions. Cells sensitive to grasping or placing typically responded well to the opposite action; cells also responded during different phases of the actions. Cell responses were sensitive to the view of the action and were dependent upon the presence of the object in the scene. We show here that action processing mechanisms established using visual adaptation parallel the neural mechanisms revealed during recording from monkey STS. Visual adaptation techniques can thus be usefully employed to investigate brain mechanisms underlying action perception.Publisher PDFPeer reviewe
Standardization of activated sludge for biodegradation tests
Activated sludges are an inoculum source commonly used in biodegradation studies, as wastewater treatment facilities constitute an entry point to the environment for many chemicals. In this paper, the main issues relating to the use of activated sludge in biodegradability tests are presented. Special attention is also devoted to discussing the factors affecting both the activity of the microbial communities and the test results. After a short survey of the state of the art of microbiology of activated sludge, the paper focuses on the methods used to reduce the variations in the diversity, quality and quantity of these communities. Finally, use of surrogates as reference materials in biodegradability tests is discussed
Environmental stress responses in Lactococcus lactis
Bacteria can encounter a variety of physical conditions during their life. Bacterial cells are able to survive these (often adverse) conditions by the induction of specific or general protection mechanisms. The lactic acid bacterium Lactococcus lactis is widely used for the production of cheese. Before and during this process as well as in its natural habitats, it is subjected to several stressful conditions. Such conditions include oxidation, heating and cooling, acid, high osmolarity/dehydration and starvation. In many environments combinations of these parameters occur. Understanding the stress response behaviour of L. lactis is important to optimize its application in industrial fermentations and is of fundamental interest as L. lactis is a non-differentiating Gram-positive bacterium. The stress response mechanisms of L. lactis have drawn increasing attention in recent years. The presence in L. lactis of a number of the conserved systems (e.g. the heat shock proteins) has been confirmed. Some of the regulatory mechanisms responding to an environmental stress condition are related to those found in other Gram-positive bacteria. Other stress response systems are conserved at the protein level but are under control of mechanisms unique for L. lactis. In a number of cases exposure to a single type of stress provides resistance to other adverse conditions. The unravelling of the underlying regulatory systems gives insight into the development of such cross resistance. Taken together, L. lactis has a unique set of stress response mechanisms, most of which have been identified on the basis of homology with proteins known from other bacteria. A number of the regulatory elements may provide attractive tools for the development of food grade inducible gene expression systems. Here an overview of the growth limits of L. lactis and the molecular characterization of its stress resistance mechanisms is presented.
Understanding evolution and the complexity of species interactions using orchids as a model system
- …
