637,837 research outputs found
GROWTH OF REGIONAL COMPETITIVENESS ON THE INNOVATION BASIS (in Terms of Prydniprovya Region)
The article demonstrates results of studies concerning solving strategic problem of innovative reformation of economy both at national level and at regional one based upon intensive search of theoretical evidence and their implementation on the basis of practical measures as for realization of cluster model of regional development and determination of its key sources of financing.The urgent problems evidence and their implementation on the basis of practical measures as for realization of cluster model of regional development and determination of its key sources of financing
Practical quantum realization of the ampere from the electron charge
One major change of the future revision of the International System of Units
(SI) is a new definition of the ampere based on the elementary charge \emph{e}.
Replacing the former definition based on Amp\`ere's force law will allow one to
fully benefit from quantum physics to realize the ampere. However, a quantum
realization of the ampere from \emph{e}, accurate to within in
relative value and fulfilling traceability needs, is still missing despite many
efforts have been spent for the development of single-electron tunneling
devices. Starting again with Ohm's law, applied here in a quantum circuit
combining the quantum Hall resistance and Josephson voltage standards with a
superconducting cryogenic amplifier, we report on a practical and universal
programmable quantum current generator. We demonstrate that currents generated
in the milliampere range are quantized in terms of
( is the Josephson frequency) with a measurement uncertainty of
. This new quantum current source, able to deliver such accurate
currents down to the microampere range, can greatly improve the current
measurement traceability, as demonstrated with the calibrations of digital
ammeters. Beyond, it opens the way to further developments in metrology and in
fundamental physics, such as a quantum multimeter or new accurate comparisons
to single electron pumps.Comment: 15 pages, 4 figure
Room temperature triggered single-photon source in the near infrared
We report the realization of a solid-state triggered single-photon source
with narrow emission in the near infrared at room temperature. It is based on
the photoluminescence of a single nickel-nitrogen NE8 colour centre in a
chemical vapour deposited diamond nanocrystal. Stable single-photon emission
has been observed in the photoluminescence under both continuous-wave and
pulsed excitations. The realization of this source represents a step forward in
the application of diamond-based single-photon sources to Quantum Key
Distribution (QKD) under practical operating conditions.Comment: 10 page
Quantum-scissors device for optical state truncation: A proposal for practical realization
We propose a realizable experimental scheme to prepare superposition of the
vacuum and one-photon states by truncating an input coherent state. The scheme
is based on the quantum scissors device proposed by Pegg, Phillips, and Barnett
[Phys. Rev. Lett. 81, 1604 (1998)] and uses photon-counting detectors, a
single-photon source, and linear optical elements. Realistic features of the
photon counting and single-photon generation are taken into account and
possible error sources are discussed together with their effect on the fidelity
and efficiency of the truncation process. Wigner function and phase
distribution of the generated states are given and discussed for the evaluation
of the proposed scheme.Comment: 11 pages, 12 figures, the final version to appear in Phys. Rev. A64,
0638xx (2001
On Structured Realizability and Stabilizability of Linear Systems
We study the notion of structured realizability for linear systems defined
over graphs. A stabilizable and detectable realization is structured if the
state-space matrices inherit the sparsity pattern of the adjacency matrix of
the associated graph. In this paper, we demonstrate that not every structured
transfer matrix has a structured realization and we reveal the practical
meaning of this fact. We also uncover a close connection between the structured
realizability of a plant and whether the plant can be stabilized by a
structured controller. In particular, we show that a structured stabilizing
controller can only exist when the plant admits a structured realization.
Finally, we give a parameterization of all structured stabilizing controllers
and show that they always have structured realizations
Experimental Realization of Entanglement Concentration and A Quantum Repeater
We report an experimental realization of entanglement concentration using two
polarization-entangled photon pairs produced by pulsed parametric
down-conversion. In the meantime, our setup also provides a proof-in-principle
demonstration of a quantum repeater. The quality of our procedure is verified
by observing a violation of Bell's inequality by more than 5 standard
deviations. The high experimental accuracy achieved in the experiment implies
that the requirement of tolerable error rate in multi-stage realization of
quantum repeaters can be fulfilled, hence providing a practical toolbox for
quantum communication over large distances.Comment: 15 pages, 4 figures, submitte
Design considerations for a monolithic, GaAs, dual-mode, QPSK/QASK, high-throughput rate transceiver
A monolithic, GaAs, dual mode, quadrature amplitude shift keying and quadrature phase shift keying transceiver with one and two billion bits per second data rate is being considered to achieve a low power, small and ultra high speed communication system for satellite as well as terrestrial purposes. Recent GaAs integrated circuit achievements are surveyed and their constituent device types are evaluated. Design considerations, on an elemental level, of the entire modem are further included for monolithic realization with practical fabrication techniques. Numerous device types, with practical monolithic compatability, are used in the design of functional blocks with sufficient performances for realization of the transceiver
Minimal-memory realization of pearl-necklace encoders of general quantum convolutional codes
Quantum convolutional codes, like their classical counterparts, promise to
offer higher error correction performance than block codes of equivalent
encoding complexity, and are expected to find important applications in
reliable quantum communication where a continuous stream of qubits is
transmitted. Grassl and Roetteler devised an algorithm to encode a quantum
convolutional code with a "pearl-necklace encoder." Despite their theoretical
significance as a neat way of representing quantum convolutional codes, they
are not well-suited to practical realization. In fact, there is no
straightforward way to implement any given pearl-necklace structure. This paper
closes the gap between theoretical representation and practical implementation.
In our previous work, we presented an efficient algorithm for finding a
minimal-memory realization of a pearl-necklace encoder for
Calderbank-Shor-Steane (CSS) convolutional codes. This work extends our
previous work and presents an algorithm for turning a pearl-necklace encoder
for a general (non-CSS) quantum convolutional code into a realizable quantum
convolutional encoder. We show that a minimal-memory realization depends on the
commutativity relations between the gate strings in the pearl-necklace encoder.
We find a realization by means of a weighted graph which details the
non-commutative paths through the pearl-necklace. The weight of the longest
path in this graph is equal to the minimal amount of memory needed to implement
the encoder. The algorithm has a polynomial-time complexity in the number of
gate strings in the pearl-necklace encoder.Comment: 16 pages, 5 figures; extends paper arXiv:1004.5179v
- …
