24,358 research outputs found
Power Allocation Schemes for Multicell Massive MIMO Systems
This paper investigates the sum-rate gains brought by power allocation
strategies in multicell massive multipleinput multiple-output systems, assuming
time-division duplex transmission. For both uplink and downlink, we derive
tractable expressions for the achievable rate with zero-forcing receivers and
precoders respectively. To avoid high complexity joint optimization across the
network, we propose a scheduling mechanism for power allocation, where in a
single time slot, only cells that do not interfere with each other adjust their
transmit powers. Based on this, corresponding transmit power allocation
strategies are derived, aimed at maximizing the sum rate per-cell. These
schemes are shown to bring considerable gains over equal power allocation for
practical antenna configurations (e.g., up to a few hundred). However, with
fixed number of users (N), these gains diminish as M turns to infinity, and
equal power allocation becomes optimal. A different conclusion is drawn for the
case where both M and N grow large together, in which case: (i) improved rates
are achieved as M grows with fixed M/N ratio, and (ii) the relative gains over
the equal power allocation diminish as M/N grows. Moreover, we also provide
applicable values of M/N under an acceptable power allocation gain threshold,
which can be used as to determine when the proposed power allocation schemes
yield appreciable gains, and when they do not. From the network point of view,
the proposed scheduling approach can achieve almost the same performance as the
joint power allocation after one scheduling round, with much reduced
complexity
5G green cellular networks considering power allocation schemes
It is important to assess the effect of transmit power allocation schemes on
the energy consumption on random cellular networks. The energy efficiency of 5G
green cellular networks with average and water-filling power allocation schemes
is studied in this paper. Based on the proposed interference and achievable
rate model, an energy efficiency model is proposed for MIMO random cellular
networks. Furthermore, the energy efficiency with average and water-filling
power allocation schemes are presented, respectively. Numerical results
indicate that the maximum limits of energy efficiency are always there for MIMO
random cellular networks with different intensity ratios of mobile stations
(MSs) to base stations (BSs) and channel conditions. Compared with the average
power allocation scheme, the water-filling scheme is shown to improve the
energy efficiency of MIMO random cellular networks when channel state
information (CSI) is attainable for both transmitters and receivers.Comment: 14 pages, 7 figure
- …