51,656 research outputs found
Essentially nonoscillatory postprocessing filtering methods
High order accurate centered flux approximations used in the computation of numerical solutions to nonlinear partial differential equations produce large oscillations in regions of sharp transitions. Here, we present a new class of filtering methods denoted by Essentially Nonoscillatory Least Squares (ENOLS), which constructs an upgraded filtered solution that is close to the physically correct weak solution of the original evolution equation. Our method relies on the evaluation of a least squares polynomial approximation to oscillatory data using a set of points which is determined via the ENO network. Numerical results are given in one and two space dimensions for both scalar and systems of hyperbolic conservation laws. Computational running time, efficiency, and robustness of method are illustrated in various examples such as Riemann initial data for both Burgers' and Euler's equations of gas dynamics. In all standard cases, the filtered solution appears to converge numerically to the correct solution of the original problem. Some interesting results based on nonstandard central difference schemes, which exactly preserve entropy, and have been recently shown generally not to be weakly convergent to a solution of the conservation law, are also obtained using our filters
Method to Predict Crowding Effects by Postprocessing Molecular Dynamics Trajectories: Application to the Flap Dynamics of HIV-1 Protease.
The internal dynamics of proteins inside of cells may be affected by the crowded intracellular environments. Here, we test a novel approach to simulations of crowding, in which simulations in the absence of crowders are postprocessed to predict crowding effects, against the direct approach of simulations in the presence of crowders. The effects of crowding on the flap dynamics of HIV-1 protease predicted by the postprocessing approach are found to agree well with those calculated by the direct approach. The postprocessing approach presents distinct advantages over the direct approach in terms of accuracy and speed and is expected to have broad impact on atomistic simulations of macromolecular crowding
Neutrino-induced neutron spallation and supernova r-process nucleosynthesis
In order to explore the consequences of the neutrino irradiation for the
supernova r-process nucleosynthesis, we calculate the rates of charged-current
and neutral-current neutrino reactions on neutron-rich heavy nuclei, and
estimate the average number of neutrons emitted in the resulting spallation.
Our results suggest that charged-current captures can be important in
breaking through the waiting-point nuclei at N=50 and 82, while still allowing
the formation of abundance peaks. Furthermore, after the r-process freezes out,
there appear to be distinctive neutral-current and charged-current
postprocessing effects. A subtraction of the neutrino postprocessing effects
from the observed solar r-process abundance distribution shows that two mass
regions, A=124-126 and 183-187, are inordinately sensitive to neutrino
postprocessing effects. This imposes very stringent bounds on the freeze-out
radii and dynamic timescales governing the r-process. Moreover, we find that
the abundance patterns within these mass windows are entirely consistent with
synthesis by neutrino interactions. This provides a strong argument that the
r-process must occur in the intense neutrino flux provided by a core-collapse
supernova.Comment: 34 pages, 4 PostScript figures, RevTe
Effect of Industrial Heat Treatment and Barrel Finishing on the Mechanical Performance of Ti6Al4V Processed by Selective Laser Melting
Additive manufacturing is now capable of delivering high-quality, complex-shaped metallic components. The titanium alloy Ti6Al4V is an example of a printable metal being broadly used for advanced structural applications. A sound characterization of static mechanical properties of additively manufactured material is crucial for its proper application, and here specifically for Ti6Al4V. This includes a complete understanding of the influence of postprocess treatment on the material behavior, which has not been reached yet. In the present paper, the postprocess effects of surface finish and heat treatment on the mechanical performance of Ti6Al4V after selective laser melting were investigated. Some samples were subjected to barrel finishing at two different intensities, while different sets of specimens underwent several thermal cycles. As a reference, a control group of specimens was included, which did not undergo any postprocessing. The treatments were selected to be effective and easy to perform, being suitable for real industrial applications. Tensile tests were performed on all the samples, to obtain yield stress, ultimate tensile strength and elongation at fracture. The area reduction of the barrel-finished samples, after being tested, was measured by using a 3D scanner, as a further indication of ductility. Experimental results are reported and discussed, highlighting the effect of postprocessing treatments on the mechanical response. We then propose the optimal postprocessing procedure to enhance ductility without compromising strength, for structures manufactured from Ti6Al4V with selective laser melting
A Radiation Imaging Detector Made by Postprocessing a Standard CMOS Chip
An unpackaged microchip is used as the sensing element in a miniaturized gaseous proportional chamber. Thisletter reports on the fabrication and performance of a complete radiation imaging detector based on this principle. Our fabrication schemes are based on wafer-scale and chip-scale postprocessing.\ud
Compared to hybrid-assembled gaseous detectors, our microsystem shows superior alignment precision and energy resolution, and offers the capability to unambiguously reconstruct 3-D radiation tracks on the spot.\u
- …
