89,875 research outputs found
The novel MAPT mutation K298E:mechanisms of mutant tau toxicity, brain pathology and tau expression in induced fibroblast-derived neurons
Frontotemporal lobar degeneration (FTLD) consists of a group of neurodegenerative diseases characterized by behavioural and executive impairment, language disorders and motor dysfunction. About 20-30 % of cases are inherited in a dominant manner. Mutations in the microtubule-associated protein tau gene (MAPT) cause frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17T). Here we report a novel MAPT mutation (K298E) in exon 10 in a patient with FTDP-17T. Neuropathological studies of post-mortem brain showed widespread neuronal loss and gliosis and abundant deposition of hyperphosphorylated tau in neurons and glia. Molecular studies demonstrated that the K298E mutation affects both protein function and alternative mRNA splicing. Fibroblasts from a skin biopsy of the proband taken at post-mortem were directly induced into neurons (iNs) and expressed both 3-repeat and 4-repeat tau isoforms. As well as contributing new knowledge on MAPT mutations in FTDP-17T, this is the first example of the successful generation of iNs from skin cells retrieved post-mortem
Post-mortem culture of Balamuthia mandrillaris from the brain and cerebrospinal fluid of a case of granulomatous amoebic meningoencephalitis, using human brain microvascular endothelial cells
The first isolation in the UK of Balamuthia mandrillaris amoebae from a fatal case of granulomatous amoebic meningoencephalitis is reported. Using primary cultures of human brain microvascular endothelial cells (HBMECs), amoebae were isolated from the brain and cerebrospinal fluid (CSF). The cultures showed a cytopathic effect at 20–28 days, but morphologically identifiable B. mandrillaris amoebae were seen in cleared plaques in subcultures at 45 days. The identification of the organism was later confirmed using PCR on Chelex-treated extracts. Serum taken while the patient was still alive reacted strongly with slide antigen prepared from cultures of the post-mortem isolate, and also with those from a baboon B. mandrillaris strain at 1 : 10 000 in indirect immunofluorescence, but with Acanthamoeba castellanii (Neff) at 1 : 160, supporting B. mandrillaris to be the causative agent. If the presence of amoebae in the post-mortem CSF reflects the condition in life, PCR studies on CSF and on biopsies of cutaneous lesions may also be a valuable tool. The role of HBMECs in understanding the interactions of B. mandrillaris with the blood–brain barrier is discussed
Severe malaria - a case of fatal Plasmodium knowlesi infection with post-mortem findings: a case report.
BACKGROUND: Zoonotic malaria caused by Plasmodium knowlesi is an important, but newly recognized, human pathogen. For the first time, post-mortem findings from a fatal case of knowlesi malaria are reported here.
CASE PRESENTATION: A formerly healthy 40 year-old male became symptomatic 10 days after spending time in the jungle of North Borneo. Four days later, he presented to hospital in a state of collapse and died within two hours. He was hyponatraemic and had elevated blood urea, potassium, lactate dehydrogenase and amino transferase values; he was also thrombocytopenic and eosinophilic. Dengue haemorrhagic shock was suspected and a post-mortem examination performed. Investigations for dengue virus were negative. Blood for malaria parasites indicated hyperparasitaemia and single species P. knowlesi infection was confirmed by nested-PCR. Macroscopic pathology of the brain and endocardium showed multiple petechial haemorrhages, the liver and spleen were enlarged and lungs had features consistent with ARDS. Microscopic pathology showed sequestration of pigmented parasitized red blood cells in the vessels of the cerebrum, cerebellum, heart and kidney without evidence of chronic inflammatory reaction in the brain or any other organ examined. Brain sections were negative for intracellular adhesion molecule-1. The spleen and liver had abundant pigment containing macrophages and parasitized red blood cells. The kidney had evidence of acute tubular necrosis and endothelial cells in heart sections were prominent.
CONCLUSIONS: The overall picture in this case was one of systemic malaria infection that fit the WHO classification for severe malaria. Post-mortem findings in this case were unexpectedly similar to those that define fatal falciparum malaria, including cerebral pathology. There were important differences including the absence of coma despite petechial haemorrhages and parasite sequestration in the brain. These results suggest that further study of knowlesi malaria will aid the interpretation of, often conflicting, information on malaria pathophysiology in humans
Outbreak of encephalitic listeriosis in red-legged partridges (Alectoris rufa)
An outbreak of neurological disease was investigated in red-legged partridges between 8 and 28 days of age. Clinical signs included torticollis, head tilt and incoordination and over an initial eight day period approximately 30–40 fatalities occurred per day. No significant gross post mortem findings were detected. Histopathological examination of the brain and bacterial cultures followed by partial sequencing confirmed a diagnosis of encephalitis due to Listeria monocytogenes. Further isolates were obtained from follow-up carcasses, environmental samples and pooled tissue samples of newly imported day-old chicks prior to placement on farm. These isolates had the same antibiotic resistance pattern as the isolate of the initial post mortem submission and belonged to the same fluorescent amplified fragment length polymorphism (fAFLP) subtype. This suggested that the isolates were very closely related or identical and that the pathogen had entered the farm with the imported day-old chicks, resulting in disease manifestation in partridges between 8 and 28 days of age. Reports of outbreaks of encephalitic listeriosis in avian species are rare and this is to the best of our knowledge the first reported outbreak in red-legged partridges
Recommended from our members
Altered expression of glutamate signaling, growth factor, and glia genes in the locus coeruleus of patients with major depression.
Several studies have proposed that brain glutamate signaling abnormalities and glial pathology have a role in the etiology of major depressive disorder (MDD). These conclusions were primarily drawn from post-mortem studies in which forebrain brain regions were examined. The locus coeruleus (LC) is the primary source of extensive noradrenergic innervation of the forebrain and as such exerts a powerful regulatory role over cognitive and affective functions, which are dysregulated in MDD. Furthermore, altered noradrenergic neurotransmission is associated with depressive symptoms and is thought to have a role in the pathophysiology of MDD. In the present study we used laser-capture microdissection (LCM) to selectively harvest LC tissue from post-mortem brains of MDD patients, patients with bipolar disorder (BPD) and from psychiatrically normal subjects. Using microarray technology we examined global patterns of gene expression. Differential mRNA expression of select candidate genes was then interrogated using quantitative real-time PCR (qPCR) and in situ hybridization (ISH). Our findings reveal multiple signaling pathway alterations in the LC of MDD but not BPD subjects. These include glutamate signaling genes, SLC1A2, SLC1A3 and GLUL, growth factor genes FGFR3 and TrkB, and several genes exclusively expressed in astroglia. Our data extend previous findings of altered glutamate, astroglial and growth factor functions in MDD for the first time to the brainstem. These findings indicate that such alterations: (1) are unique to MDD and distinguishable from BPD, and (2) affect multiple brain regions, suggesting a whole-brain dysregulation of such functions
From fix to fit into the autoptic human brains.
Formalin-fixed, paraffinembedded (FFPE) human brain tissues are very often stored in formalin for long time. Formalin fixation reduces immunostaining, and the DNA/RNA extraction from FFPE brain tissue becomes suboptimal. At present, there are different protocols of fixation and several procedures and kits to extract DNA/RNA from paraffin embedding tissue, but a gold standard protocol remains distant. In this study, we analyzed four types of fixation systems and compared histo and immuno-staining. Based on our results, we propose a modified method of combined fixation in formalin and formic acid for the autoptic adult brain to obtain easy, fast, safe and efficient immunolabelling of long-stored FFPE tissue. In particular, we have achieved an improved preservation of cellular morphology and obtained success in postmortem immunostaining for NeuN. This nuclear antigen is an important marker for mapping neurons, for example, to evaluate the histopathology of temporal lobe epilepsy or to draw the topography of cardiorespiratory brainstem nuclei in sudden infant death syndrome (SIDS). However, NeuN staining is frequently faint or lost in postmortem human brain tissues. In addition, we attained Fluoro Jade C staining, a marker of neurodegeneration, and immunofluorescent staining for stem cell antigens in the postnatal human brain, utilizing custom fit fixation procedures
Post-mortem culture of Balamuthia mandrillaris from the brain and cerebrospinal fluid of a case of granulomatous amoebic meningoencephalitis, using human brain microvascular endothelial cells.
The first isolation in the UK of Balamuthia mandrillaris amoebae from a fatal case of granulomatous amoebic meningoencephalitis is reported. Using primary cultures of human brain microvascular endothelial cells (HBMECs), amoebae were isolated from the brain and cerebrospinal fluid (CSF). The cultures showed a cytopathic effect at 20-28 days, but morphologically identifiable B. mandrillaris amoebae were seen in cleared plaques in subcultures at 45 days. The identification of the organism was later confirmed using PCR on Chelex-treated extracts. Serum taken while the patient was still alive reacted strongly with slide antigen prepared from cultures of the post-mortem isolate, and also with those from a baboon B. mandrillaris strain at 1:10,000 in indirect immunofluorescence, but with Acanthamoeba castellanii (Neff) at 1:160, supporting B. mandrillaris to be the causative agent. If the presence of amoebae in the post-mortem CSF reflects the condition in life, PCR studies on CSF and on biopsies of cutaneous lesions may also be a valuable tool. The role of HBMECs in understanding the interactions of B. mandrillaris with the blood-brain barrier is discussed
Recommended from our members
Nox2 dependent redox-regulation of microglial response to amyloid-β stimulation and microgliosis in aging
Microglia express constitutively a Nox2 enzyme that is involved in neuroinflammation by the
generation of reactive oxygen species (ROS). Amyloid β (Aβ) plays a crucial role in Alzheimer’s disease.
However, the mechanism of Aβ-induced microglial dysfunction and redox-regulation of microgliosis
in aging remains unclear. In this study, we examined Nox2-derived ROS in mediating microglial
response to Aβ peptide 1–42 (Aβ42) stimulation in vitro, in aging-associated microgliosis in vivo and in
post-mortem human samples. Compared to controls, Aβ42 markedly induced BV2 cell ROS production,
Nox2 expression, p47phox and ERK1/2 phosphorylation, cell proliferation and IL-1β secretion. All
these changes could be inhibited to the control levels in the presence of Nox2 inhibitor or superoxide
scavenger. Compared to young (3–4 months) controls, midbrain tissues from wild-type aging mice (20–
22 months) had significantly higher levels of Nox2-derived ROS production, Aβ deposition, microgliosis
and IL-1β production. However, these aging-related changes were reduced or absent in Nox2 knockout
aging mice. Clinical significance of aging-associated Nox2 activation, microgliosis and IL-1β production
was investigated using post-mortem midbrain tissues of humans at young (25–38 years) and old age
(61–85 years). In conclusion, Nox2-dependent redox-signalling is crucial in microglial response to Aβ42
stimulation and in aging-associated microgliosis and brain inflammation
Exaggerated CpH methylation in the autism-affected brain.
BackgroundThe etiology of autism, a complex, heritable, neurodevelopmental disorder, remains largely unexplained. Given the unexplained risk and recent evidence supporting a role for epigenetic mechanisms in the development of autism, we explored the role of CpG and CpH (H = A, C, or T) methylation within the autism-affected cortical brain tissue.MethodsReduced representation bisulfite sequencing (RRBS) was completed, and analysis was carried out in 63 post-mortem cortical brain samples (Brodmann area 19) from 29 autism-affected and 34 control individuals. Analyses to identify single sites that were differentially methylated and to identify any global methylation alterations at either CpG or CpH sites throughout the genome were carried out.ResultsWe report that while no individual site or region of methylation was significantly associated with autism after multi-test correction, methylated CpH dinucleotides were markedly enriched in autism-affected brains (~2-fold enrichment at p < 0.05 cutoff, p = 0.002).ConclusionsThese results further implicate epigenetic alterations in pathobiological mechanisms that underlie autism
- …
