1,471,348 research outputs found
Position estimation delays in signal injection-based sensorless PMSM drives
The causes of position estimation delays and their effects on the sensorless control of permanent magnet synchronous motor drives are investigated. The position of a permanent magnet synchronous machine is estimated via the injection of high frequency voltage signals. The delays under investigation are due to the digital implementation of the control algorithm and to the digital filters adopted for decoupling the inspection signals from the fundamental components of the stator current measures. If not correctly modeled and compensated, such delays can reduce the performance of the control scheme. Experimental results are provided, proving the accuracy of the modeling approach and the effectiveness of the related compensation strateg
Phase Estimation from Atom Position Measurements
We study the measurement of the position of atoms as a means to estimate the
relative phase between two Bose-Einstein condensates. First, we consider
atoms released from a double-well trap, forming an interference pattern, and
show that a simple least-squares fit to the density gives a shot-noise limited
sensitivity. The shot-noise limit can instead be overcome by using correlation
functions of order or larger. The measurement of the
-order correlation function allows to estimate the relative phase
at the Heisenberg limit. Phase estimation through the measurement of the
center-of-mass of the interference pattern can also provide sub-shot-noise
sensitivity. Finally, we study the effect of the overlap between the two clouds
on the phase estimation, when Mach-Zehnder interferometry is performed in a
double-well.Comment: 20 pages, 6 figure
Mitigation of cross-saturation effects in resonance-based sensorless switched reluctance drives
The stator and rotor yoke in a switched reluctance motor form magnetic circuit parts that are typically shared by different phases. If these parts saturate due to the excitation of one phase, this will lead to a change of the magnetic characteristics of all other phases sharing these parts. In several position-sensorless methods, cross-saturation leads to a load-dependent position estimation error. In this paper, the influence of cross-saturation on a resonance-based position estimation method is studied. The method extracts position information from electrical resonances triggered in an idle motor phase. A cross-saturation mitigation scheme is presented in order to reduce the commutation position error. The scheme uses only one additional parameter per phase which can be measured automatically during commissioning of the drive. Experimental results at low and medium speed show that the position estimation error remains smaller dan 2 mechanical degrees over the rated load range
Position estimation of mobile robots based on coded infrared signal transmission
A system based on coded infrared signal transmission for the estimation of position of mobile robots in a structured environment is reported. Particular emphasis is placed on the polar coordinate arrangement in which signals are sent from the transmitters situated at the corners of the boundaries of operation. A multisensor system, strategically situated onboard the robot, has been found to improve the accuracy of the position estimation substantially. The information detected by the sensors is suitably processed to calculate the central position of the robot geometrically. The algorithms for the position calculations and the operational strategy are presented. This system forms the basis for the coordination and cooperation philosophy of multiple mobile robots sharing the same environment and performing cooperative or competitive tasks
Position and Orientation Estimation through Millimeter Wave MIMO in 5G Systems
Millimeter wave signals and large antenna arrays are considered enabling
technologies for future 5G networks. While their benefits for achieving
high-data rate communications are well-known, their potential advantages for
accurate positioning are largely undiscovered. We derive the Cram\'{e}r-Rao
bound (CRB) on position and rotation angle estimation uncertainty from
millimeter wave signals from a single transmitter, in the presence of
scatterers. We also present a novel two-stage algorithm for position and
rotation angle estimation that attains the CRB for average to high
signal-to-noise ratio. The algorithm is based on multiple measurement vectors
matching pursuit for coarse estimation, followed by a refinement stage based on
the space-alternating generalized expectation maximization algorithm. We find
that accurate position and rotation angle estimation is possible using signals
from a single transmitter, in either line-of- sight, non-line-of-sight, or
obstructed-line-of-sight conditions.Comment: The manuscript has been revised, and increased from 27 to 31 pages.
Also, Fig.2, Fig. 10 and Table I are adde
- …
