149,347 research outputs found

    Polynomial Interpolation and Applications to Autoregressive Models

    Get PDF
    Polynomial interpolation can be used to approximate functions and their derivatives. Some autoregressive models can be stated by using polynomial interpolation and function approximation.polynomial interpolation; autoregressive models;

    A Discrete Adapted Hierarchical Basis Solver For Radial Basis Function Interpolation

    Full text link
    In this paper we develop a discrete Hierarchical Basis (HB) to efficiently solve the Radial Basis Function (RBF) interpolation problem with variable polynomial order. The HB forms an orthogonal set and is adapted to the kernel seed function and the placement of the interpolation nodes. Moreover, this basis is orthogonal to a set of polynomials up to a given order defined on the interpolating nodes. We are thus able to decouple the RBF interpolation problem for any order of the polynomial interpolation and solve it in two steps: (1) The polynomial orthogonal RBF interpolation problem is efficiently solved in the transformed HB basis with a GMRES iteration and a diagonal, or block SSOR preconditioner. (2) The residual is then projected onto an orthonormal polynomial basis. We apply our approach on several test cases to study its effectiveness, including an application to the Best Linear Unbiased Estimator regression problem

    General Linearized Polynomial Interpolation and Its Applications

    Full text link
    In this paper, we first propose a general interpolation algorithm in a free module of a linearized polynomial ring, and then apply this algorithm to decode several important families of codes, Gabidulin codes, KK codes and MV codes. Our decoding algorithm for Gabidulin codes is different from the polynomial reconstruction algorithm by Loidreau. When applied to decode KK codes, our interpolation algorithm is equivalent to the Sudan-style list-1 decoding algorithm proposed by K/"otter and Kschischang for KK codes. The general interpolation approach is also capable of solving the interpolation problem for the list decoding of MV codes proposed by Mahdavifar and Vardy, and has a lower complexity than solving linear equations

    Counterexample-Guided Polynomial Loop Invariant Generation by Lagrange Interpolation

    Full text link
    We apply multivariate Lagrange interpolation to synthesize polynomial quantitative loop invariants for probabilistic programs. We reduce the computation of an quantitative loop invariant to solving constraints over program variables and unknown coefficients. Lagrange interpolation allows us to find constraints with less unknown coefficients. Counterexample-guided refinement furthermore generates linear constraints that pinpoint the desired quantitative invariants. We evaluate our technique by several case studies with polynomial quantitative loop invariants in the experiments

    On the constrained mock-Chebyshev least-squares

    Full text link
    The algebraic polynomial interpolation on uniformly distributed nodes is affected by the Runge phenomenon, also when the function to be interpolated is analytic. Among all techniques that have been proposed to defeat this phenomenon, there is the mock-Chebyshev interpolation which is an interpolation made on a subset of the given nodes whose elements mimic as well as possible the Chebyshev-Lobatto points. In this work we use the simultaneous approximation theory to combine the previous technique with a polynomial regression in order to increase the accuracy of the approximation of a given analytic function. We give indications on how to select the degree of the simultaneous regression in order to obtain polynomial approximant good in the uniform norm and provide a sufficient condition to improve, in that norm, the accuracy of the mock-Chebyshev interpolation with a simultaneous regression. Numerical results are provided.Comment: 17 pages, 9 figure
    corecore