43,795 research outputs found

    Preinfection chemotactic response of blood polymorphonuclear leukocytes to predict severity of Escherichia-coli mastitis.

    Get PDF
    Experimental mastitis was induced by inoculating rear right quarters of 10 healthy cows with 10(3) cfu of Escherichia coli. The chemotactic responses of peripheral blood polymorphonuclear leukocytes at d -6, -5, -2, -1, and immediately prior to inoculation were measured. Chemiluminescence of polymorphonuclear leukocytes was measured immediately prior to inoculation. Severity of the experimental mastitis was assessed by bacterial growth in the inoculated quarters. Results of this study indicated that severity of the experimental mastitis may be predicted by the chemotactic response in vitro of polymorphonuclear leukocytes isolated from the peripheral blood at d 2, d 1, and immediately prior to inoculation. The number of circulating polymorphonuclear leukocytes immediately prior to inoculation also showed a negative relationship with the severity of mastitis. No relationship existed between preinfection chemiluminescence of polymorphonuclear leukocytes and the severity of the experimental mastitis. Preinfection chemotactic response of polymorphonuclear leukocytes and preinfection numbers of circulating polymorphonuclear leukocytes appeared to be valuable as predictors of severity of experimental E. coli mastitis in cows

    Severity of experimental escherichia-coli mastitis in ketonemic and nonketonemic dairy-cows.

    Get PDF
    The severity of experimental Escherichia coli mastitis in relation to in vitro chemotaxis of polymorphonuclear leukocytes was investigated in cows during negative energy balance. The negative energy balance was induced by feed restriction. Cows were classified into two groups, ketonemic and nonketonemic, based on the beta-hydroxybutyrate concentration in the peripheral blood at the moment of inoculation. Bacterial growth in the inoculated quarter was used as a parameter to indicate the severity of experimental mastitis. In the nonketonemic cows, experimental mastitis ranged from moderate to severe. Severity of experimental mastitis was negatively related to preinfection chemotactic response of polymorphonuclear leukocytes. In contrast, the course of experimental mastitis in the ketonemic group was relatively severe in all cows, regardless of preinfection chemotactic response

    In vitro effects of nonesterified fatty acids on bovine neutrophils oxidative burst and viability

    Get PDF
    An in vitro study was conducted to examine the influence of nonesterified fatty acids (NEFA) on bovine polymorphonuclear leukocytes (PMN). Eight healthy, midlactating Holstein cows were used as blood donors. Blood PMN were isolated and incubated with a mixture of NEFA, reflecting composition of bovine plasma NEFA at concentrations that were intended to mimic those found in blood of cows undergoing high, moderate, or low lipomobilization intensity (2, 1, 0.5, 0.25, 0.125, and 0.0625 mM). Control samples were incubated in absence of NEFA. Phagocytosis and oxidative burst activities were assessed by a 2-color flow cytometric method, which was based on oxidation of intracellular dihydrorhodamine 123 to green fluorescent rhodamine 123. Oxidative burst products were generated by incubating PMN with Staphylococcus aureus labeled with propidium iodide. A flow cytometric technique was used to detect PMN viability, necrosis, and apoptosis using fluorescein isothiocyanate-labeled annexin-V and propidium iodide. Phagocytic activity was not affected by NEFA. The highest concentration of NEFA (2 mM) was associated with a dramatic increase of phagocytosis-associated oxidative burst activities with a reduction in cell viability (48.0 vs. 97.5% in control samples) and with a marked increase of necrosis (49.4 vs. 0.5% in control samples). Conversely, the mixture of NEFA did not affect the occurrence of apoptosis. Enhancement of the oxidative burst associated with the highest concentration of NEFA might explain the reduced viability and higher percentage of necrosis observed under the same conditions. This study demonstrated a substantial resistance of bovine PMN to an overload of fatty acids. However, observation that the highest concentration of NEFA regulated some PMN functions encourages the possibility of in vivo studies to assess the relationships between intensity of lipomobilization, plasma NEFA, and bovine PMN functions

    Validation of internal control genes for gene expression analysis in bovine polymorphonuclear leukocytes

    Get PDF
    Analysis of gene expression is becoming more important in all areas of biological research to evaluate gene expression during physiological and pathological conditions (e.g., mastitis), not the least in the field of animal research. Presently, real-time gene expression analysis is considered to be the method of choice for accurate and sensitive quantification of mRNA transcripts. Because comparison of gene expression levels is frequently the aim of these experiments, there is a critical need to validate internal control genes. When studying gene expression in bovine polymorphonuclear leukocytes, special attention should be paid to this validation, because polymorphonuclear leukocytes are subjected to numerous physiological influences, depending on the stage of lactation. In this study, 8 commonly used reference genes (ACT, GAPD, H2A, TBP, HPRT1, SDHA, YWHAZ, and 18S rRNA) were evaluated in bovine polymorphonuclear leukocytes. The transcription levels of 6 reference genes were determined using real-time PCR. By geometrically averaging the expression levels of these genes, SDHA, YWHAZ, and 18S rRNA were selected as being the most stable genes for accurate normalization of real-time results of bovine polymorphonuclear leukocytes

    New markers of bulk milk quality in relation to mastitis

    Get PDF
    All dairy processors depend on a continuous supply of high-quality bulk milk from milk producers to be able to distribute liquid milk and dairy products. Mastitis, inflammation of the bovine udder, is the most common disease in dairy cows, and leads to altered milk composition and impaired milk quality. The somatic cell count (SCC) is currently used as a marker for udder health, and indirectly, for bulk milk quality, but because it is somewhat insensitive and unspecific, there has been an interest to find alternative markers. The main objective of this thesis was to acquire more knowledge about two potential markers for bulk milk quality: polymorphonuclear leukocyte count (PMNC) and α-lactalbumin (α-LA). Another objective was to study if the combination of α-LA, haptoglobin (Hp) and serum amyloid A (SAA) in an acute phase index (API) could be useful as an alternative marker for bulk milk quality. Bulk milk samples were collected from Swedish dairy farms and analyzed for PMNC, α-LA, SCC, haptoglobin (Hp), serum amyloid A (SAA), fat, lactose, total protein and casein contents, casein number, protein composition, proteolysis and coagulating properties. An API was calculated for each sample by combining results on α-LA, Hp and SAA. Samples with high PMNC had a lower casein number than samples with low PMNC, while samples with high SCC had lower lactose and casein contents, lower casein number and more proteolysis than low SCC samples. There was no significant difference in the inflammatory markers SCC, PMNC, Hp and SAA between milk samples containing low, medium or high concentrations of α-LA. Differences between α-LA groups were, however, found in some milk quality parameters as high α-LA concentration was related to low concentrations of αs1-, αs2- and β-casein, and high concentrations of lactose and β-lactoglobulin. High API was related to low lactose content and casein number. In conclusion, PMNC and α-LA were not considered more useful markers of inflammation and milk quality in bulk milk than SCC, which is currently used

    Influence of 17 beta-estradiol, progesterone, and dexamethasone on diapedesis and viability of bovine blood polymorphonuclear leukocytes

    Get PDF
    The aim of the current study was to investigate whether polymorphonuclear leukocyte (PMN) diapedesis and viability are influenced by steroid hormones. Using an in vitro model with different types of cell layers ( bovine mammary epithelial cells and fibroblasts), we investigate whether steroid hormone treatments (17beta-estradiol, progesterone, and dexamethasone) have an influence on the diapedesis capacity and viability of PMN. In addition, we studied apoptosis of PMN in the in vitro model and evaluated the influence of different types of cell layers and steroid hormone treatments on this process. A significant decrease in the number of viable PMN in the lower compartment of the in vitro model (i.e., number of migrated PMN x viability after migration) was found after 17beta-estradiol treatment, whereas no influence was detected after progesterone or dexamethasone treatment. The effect of 17beta-estradiol was not due to a lower viability before migration as none of the treatments caused a significant effect on the viability before diapedesis. This treatment effect was not influenced by endogenous 17beta-estradiol or progesterone levels before isolation because there was no correlation between these plasma levels and PMN diapedesis capacity or viability. Furthermore, migration through epithelial cells caused a significant decrease in viability of PMN due to increased apoptosis but not necrosis

    Potential mechanism of action of J5 vaccine in protection against severe bovine coliform mastitis.

    Get PDF
    Coliform mastitis is one of the most difficult diseases to treat in the modern dairy industry. Curative therapy with antibiotics remains only moderately effective and depends on the stage at which the disease is treated, The most successful strategies for combating coliform. mastitis appear to be prevention by hygienic management or prophylactic immunization. The severity of clinical symptoms of coliform mastitis has been shown to be reduced by immunization with the Escherichia coli J5 vaccine. However, although the J5 vaccine has been licensed in the United States for about 10 years, the immunological basis of its mechanism of action is still unknown. Until now, protection by J5 vaccination has often been explained by a straight forward mechanism of enhanced antibody production resulting in increased opsonization of coliform bacteria and lipopolysaccharides (LPS). The possibility that J5 vaccination could decrease risk factors for coliform mastitis such as impaired blood polymorphonuclcar neutrophil leukocyte (PMN) diapedesis has never been investigated. This review provides arguments to support the hypothesis that J5 vaccination may reduce the severity of coliform mastitis by inducing a condition of mammary gland hyper-responsiveness, characterized by a T helper 1 (Th1) response and mediated by memory cells inside the mammary gland, finally resulting in enhanced PMN diapedesis upon an intramammary infection

    The effects of stress on the enzymes of peripheral leukocytes

    Get PDF
    Previous work showed an early response of rabbit and human leukocyte enzymes to the stress of bacterial infection. Since these represented a mixed population of leukocytes and since polymorphonuclear leukocytes (PMN) increased in these preparations, it was necessary to establish whether the observed increase in lactate dehydrenase (LDH) and protein was the result of an increase in any one particular cell type or in all cells. The need for the development of a simple reproducible method for the differential separation of peripheral leukocytes for the furtherance of our own studies was apparent. It was also becoming increasingly apparent that morphologically similar cells, such as small lymphocytes (L) and macrophages, were capable of different biological functions. A dextran gradient centrifugation method was developed which has provided an easily reproducible technique for separating L from PMN. During the course of this work, in which over 250 rabbits were examined, the pattern of daily leukocyte protein and enzyme variation became increasingly more apparent. This information could have some impact on future work with leukocyte enzymes, by our group and by other workers. The differences in normal protein and enzyme levels maintained by some individuals, and some inbred strains, were evaluated and reported separately. It has been shown that one type of leukocyte may react more to a given stress than other leukocytes

    Differential leukocyte count method for bovine low somatic cell count milk

    Get PDF
    Whereas many differential leukocyte count methods for high somatic cell count (SCC) milk from mastitic cows are available, only a few have been developed for low SCC milk. We have developed a flow cytometric differential leukocyte count method for low SCC milk. The procedure consists of 1) 1.5 ml of diluted milk sample (30%, vol/vol dilution with PBS), 2) centrifugation, 3) leukocyte labeling with SYTO 13 and 4) flow cytometric analysis. Four major leukocyte populations can be clearly identified in the green fluorescence-side scatter dot plot: lymphocytes and monocytes (LM), polymorphonuclear neutrophils (PMN), mature macrophages (MO), and cells with apoptotic features based on chromatin condensation and nuclear fragmentation. The optimal processing temperature was 20degreesC. Significant differences among samples with similar differential leukocyte counts were found. Storage of milk samples during 2 d at 7degreesC had no effect on differential leukocyte count. Using the new method, differential leukocyte count was performed in low SCC milk samples from cows in early, mid, and late lactation. In accordance with previous studies, PMN and M P percentages were lower and LM percentages were higher in early lactation than in the other stages of lactation. The percentage of cells with apoptotic features was higher in early lactation than in mid and late lactation. In conclusion, a rapid, simple, accurate, and reproducible standard procedure was developed to determine the differential leukocyte count (MO, PMN, LM, and cells with apoptotic features) of bovine low SCC milk

    Preinfection in vitro chemotaxis, phagocytosis, oxidative burst, and expression of CD11/CD18 receptors and their predictive capacity on the outcome of mastitis induced in dairy cows with Escherichia coli.

    Get PDF
    Four to 6 wk after parturition, 12 cows in second, fourth, or fifth lactation were experimentally infected in one gland with Escherichia coli. The capacity of chemotaxis, phagocytosis, oxidative burst, and expression of CD11/CD18 receptors to predict the severity of IMI was measured. Bacterial counts in the infected quarter, expressed as area under the curve, and residual milk production in the uninfected quarters were compared to determine severity of the infection. Although these two outcome parameters were highly negatively correlated, regression models with preinfection tests for leukocyte function fitted best with bacterial counts as an outcome parameter. Of the preinfection tests for leukocyte function, chemotaxis best predicted the outcome of the IMI that had been experimentally induced by E. coli. The number of circulating peripheral leukocytes just prior to inoculation was used to predict 52 and 45% of the severity of IMI for bacterial counts and residual milk production, respectively. As a categorical variable, parity predicted 75 and 56% of the severity of IMI expressed as bacterial counts and residual milk production, respectively. Because of the strong effect of parity on the outcome of the experimentally induced mastitis, analysis was performed to discriminate between second parity cows and older cows. Significant differences were found for the number of circulating peripheral leukocytes and for the expression of CD11b/CDl8 and CD11c/CD18 receptors between younger and older cows
    corecore