42,652 research outputs found
Evolution of polymer blend morphologies during extrusion in a flat die
The control of blend morphologies during process is of prime importance in order to predict the final properties of polymer blends. A coextrusion technique combined with static mixers was developed in order to smartly blend polymeric melts and to optimize the blend morphologies during the flow in static mixers [1]. The aim of this paper is to study the evolution of those blend morphologies during extrusion in a flat die. The effect of the viscosity ratio and the interfacial tension are also investigated. The experimental observations are confronted with numerical simulation results
Poly(2-propylacrylic acid)/poly(lactic-co-glycolic acid) blend microparticles as a targeted antigen delivery system to direct either CD4+ or CD8+ T cell activation.
Poly(lactic-co-glycolic acid) (PLGA) based microparticles (MPs) are widely investigated for their ability to load a range of molecules with high efficiency, including antigenic proteins, and release them in a controlled manner. Micron-sized PLGA MPs are readily phagocytosed by antigen presenting cells, and localized to endosomes. Due to low pH and digestive enzymes, encapsulated protein cargo is largely degraded and processed in endosomes for MHC-II loading and presentation to CD4+ T cells, with very little antigen delivered into the cytosol, limiting MHC-I antigenic loading and presentation to CD8+ T cells. In this work, PLGA was blended with poly(2-propylacrylic acid) (PPAA), a membrane destabilizing polymer, in order to incorporate an endosomal escape strategy into PLGA MPs as an easily fabricated platform with diverse loading capabilities, as a means to enable antigen presentation to CD8+ T cells. Ovalbumin (OVA)-loaded MPs were fabricated using a water-in-oil double emulsion with a 0% (PLGA only), 3 and 10% PPAA composition. MPs were subsequently determined to have an average diameter of 1 µm, with high loading and a release profile characteristic of PLGA. Bone marrow derived dendritic cells (DCs) were then incubated with MPs in order to evaluate localization, processing, and presentation of ovalbumin. Endosomal escape of OVA was observed only in DC groups treated with PPAA/PLGA blends, which promoted high levels of activation of CD8+ OVA-specific OT-I T cells, compared to DCs treated with OVA-loaded PLGA MPs which were unable activate CD8+ T cells. In contrast, DCs treated with OVA-loaded PLGA MPs promoted OVA-specific OT-II CD4+ T cell activation, whereas PPAA incorporation into the MP blend did not permit CD4+ T cell activation. These studies demonstrate PLGA MP blends containing PPAA are able to provide an endosomal escape strategy for encapsulated protein antigen, enabling the targeted delivery of antigen for tunable presentation and activation of either CD4+ or CD8+ T cells
Monte Carlo simulations of interfaces in polymer blends
We review recent simulation studies of interfaces between immiscible
homopolymer phases. Special emphasis is given to the presentation of efficient
simulation techniques and powerful methods of data analysis, such as the
analysis of capillary wave spectra. Possible reasons for polymer
incompatibility and ways to relate model dependent interaction parameters to an
effective Flory Huggins parameter are discussed. Various interfaces are then
considered and characterised with respect to their microscopic structure and
thermodynamic properties. In particular, interfaces between homopolymers of
equal or disparate stiffness are studied, interfaces containing diblock
copolymers, and interfaces confined in thin films. The results are related to
the phase behaviour of ternary homopolymer/copolymer systems, and to wetting
transitions in thin films.Comment: To appear in Annual Reviews of Computational Physics, edt. D.
Stauffe
Exploring Disordered Morphologies of Blends and Block Copolymers for Light-Emitting Diodes with Mesoscopic Simulations
Properties of polypyrrole polyvinilsulfate films for dual actuator sensing systems
One of the challenges of modern science is the development of actuators able to sense working conditions while actuation, mimicking the way in which biological organs work. Actuation of those organs includes nervous (electric) pulses dense reactive gels, chemical reactions exchange of ions and solvent. For that purpose, conducting polymers are being widely studied. In this work the properties of self-supported films of the polypyrrole:polyvinilsulfate (PPy/PVS) blend polymer were assessed. X-ray photoelectron spectroscopy (XPS) studies show how during reduction / oxidation the polymer exchanges cations when immersed in a NaClO4 aqueous solution, revealing free positive charges in the electrolytic solution as the driving agents leading to the swelling/shrinking of the polymer. Eventually it is the phenomenon responsible of the actuation of the polymeric motors. Submitting the system to consecutive potential sweeps shows the reaction is really sensing the scan rate used in each cycle revealing that while actuating the system is actually sensing the electrochemical working conditions.The research was supported by European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 641822
In vivo testing of crosslinked polyethers. II. Weight loss, IR analysis, and swelling behavior after implantation
As reported in Part I (In vivo testing of crosslinked polyethers. I. Tissue reactions and biodegradation, J. Biomed. Mater. Res., this issue, pp. 307-320), microscopical evaluation after implantation of crosslinked (co)polyethers in rats showed differences in the rate of biodegradation, depending on the presence of tertiary hydrogen atoms in the main chain and the hydrophilicity of the polyether system. In this article (Part II) the biostability will be discussed in terms of weight loss, the swelling behavior, and changes in the chemical structure of the crosslinked polyethers after implantation. The biostability increased in the order poly(POx) < poly(THF-co-OX) < poly(THF) for the relatively hydrophobic polyethers. This confirmed our hypothesis that the absence of tertiary hydrogen atoms would improve the biostability. On the other hand, signs of biodegradation were observed for all polyether system studied. Infrared surface analysis showed that biodegradation was triggered by oxidative attack on the polymeric chain, leading to the formation of carboxylic ester and acid groups. It also was found that in the THF-based (co)polyethers, α-methylene groups were more sensitive than β-methylene groups. For a hydrophilic poly(THF)/PEO blend, an increase in surface PEO content was found, which might be due to preferential degradation of the PEO domains
Chitosan/Poly(2-ethyl-2-oxazoline) films with ciprofloxacin for application in vaginal drug delivery
Chitosan (CHI) and chitosan/poly(2-ethyl-2-oxazoline) (CHI/POZ)-based films were prepared by casting from aqueous solutions of polymer blends with different compositions. Ciprofloxacin was used as a model drug in these formulations. The weight, thickness, folding endurance and transparency of blend films were measured and characterised. All films had a uniform thickness (0.06 ± 0.01 mm) and exhibited sufficient flexibility. The surface pHs of films ranged from 3.76 ± 0.49 to 4.14 ± 0.32, which is within the pH range suitable for vaginal applications. The cumulative release of the drug from the films in experiments in vitro was found to be 42 ± 2% and 56 ± 1% for pure CHI and CHI/POZ (40:60) films, respectively. Drug-free chitosan/poly(2-ethyl-2-oxazoline) films showed weak antimicrobial activity against Escherichia coli. Drug-loaded CHI and CHI/POZ films showed good antimicrobial properties against both Gram-positive Staphylococcus aureus and Gram-negative bacteria Escherichia coli. Mucoadhesive properties of these films with respect to freshly excised sheep vaginal mucosa were evaluated using a tensile method. It was established that all films were mucoadhesive, but an increase in POZ content in the blend resulted in a gradual reduction of their ability to stick to vaginal mucosa. These films could potentially find applications in vaginal drug delivery
Reactions at polymer interfaces: A Monte Carlo Simulation
Reactions at a strongly segregated interface of a symmetric binary polymer
blend are investigated via Monte Carlo simulations. End functionalized
homopolymers of different species interact at the interface instantaneously and
irreversibly to form diblock copolymers. The simulations, in the framework of
the bond fluctuation model, determine the time dependence of the copolymer
production in the initial and intermediate time regime for small reactant
concentration . The results are compared to
recent theories and simulation data of a simple reaction diffusion model. For
the reactant concentration accessible in the simulation, no linear growth of
the copolymer density is found in the initial regime, and a -law is
observed in the intermediate stage.Comment: to appear in Macromolecule
Surface segregation of conformationally asymmetric polymer blends
We have generalized the Edwards' method of collective description of dense
polymer systems in terms of effective potentials to polymer blends in the
presence of a surface. With this method we have studied conformationally
asymmetric athermic polymer blends in the presence of a hard wall to the first
order in effective potentials. For polymers with the same gyration radius
but different statistical segment lengths and the excess
concentration of stiffer polymers at the surface is derived as % \delta \rho
_{A}(z=0)\sim (l_{B}^{-2}-l_{A}^{-2}){\ln (}R_{g}^{2}/l_{c}^{2}{)%}, where
is a local length below of which the incompressibility of the polymer
blend is violated. For polymer blends differing only in degrees of
polymerization the shorter polymer enriches the wall.Comment: 11 pages, 7 figures, revtex
Novel solid-state emissive polymers and polymeric blends from a T-Shaped benzodifuran scaffold: A comparative study
Two novel polyimines were synthesized from a benzodifuran based diamino monomer and two dialdehydes bearing bulky groups and a flexible spacer. The polymers display tuned luminescence performance according to the presence of half-salen groups. The effect of the intramolecular bond on the emission properties were examined. Two model compounds, replicating the same emissive Schiff base cores, were synthetized. From the models, dye-doped blends in the fluorophore/matrix ratio, resembling the polymers, were produced. Amorphous thin films of the covalent polymers and the polymeric blends were obtained by spin-coating technique. The Photoluminescent (PL) response of the different macromolecular systems were qualitatively and quantitatively examined and compared
- …
