348,727 research outputs found
Atomic resolution imaging of electrode surfaces in solutions containing reversible redox species
Procedures are described for insulating metal scanning tunneling microscope (STM) tips with either glass or polymer coatings. In solutions containing 0.10 M of a reversible redox couple, Fe(CN) - 3/-46 , the faradaic limiting current to polymer coated tips was 200–500 pA and that for glass coated tips was <10 pA. For polymer insulated tips, steady-state currents of 10–100 pA were observed at tip-sample displacements less than 0.3 µm. The suppression of faradaic current achieved by these coating procedures enabled the collection of the first atomic resolution STM images of highly ordered pyrolytic graphite electrodes in contact with redox-active electrolytes. Preliminary data for the in situ electrochemical characterization of these tips are also discussed
Dielectric properties of Polymer Electrolyte
A series of polymer electrolyte having Na+ ion as the principal charge carrier has been prepared by solution casting technique and analyzed with different experimental techniques. In the present study, sodium iodide (NaI) was taken as the salt and poly (ethylene oxide), PEO was taken as the polymer host for polymer-salt complexation. Solution cast method was used to prepare polymer electrolytes of different polymer to salt ratio (O/Na= 0, 20, 40, 60, 80, 100). The structural characterization was carried out using X-ray diffraction. The XRD pattern showed the formation of polymer-salt complexation with the existence of both crystalline and amorphous phases in the materials. This semicrystalline nature of polymer electrolyte was observed by microstructural characterization using Scanning Electron Microscope. The electrical properties of polymer electrolytes were carried out using complex impedance analysis in the frequency range of 100 mHz to 1MHz at room temperature. Dielectric properties, a.c. conductivity and impedance data were analyzed with respect to different frequency and different compositions
Fabrication of mesoscale polymeric templates for three-dimensional disordered photonic materials
We report on the mesoscale fabrication and characterization of polymeric
templates for isotropic photonic materials derived from hyper- uniform point
patterns using direct laser writing in a polymer photoresist. We study
experimentally the microscopic structure by electron microscopy and small angle
light scattering. Reducing the refractive index mismatch by liquid infiltration
we find good agreement between the scattering data and numerical calculations
based on a discrete dipole approximation. Our work demonstrates the feasibility
of fabricating such random designer materials on technologically relevant
length scales.Comment: submitte
Automation potential of a new, rapid, microscopy based method for screening drug-polymer solubility
For the pharmaceutical industry, the preformulation screening of the compatibility of drug and polymeric excipients can often be time-consuming because of the use of trial-and-error approaches. This is also the case for selecting highly effective polymeric excipients for forming molecular dispersions in order to improve the dissolution and subsequent bio-availability of a poorly soluble drug. Previously, we developed a new thermal imaging-based rapid screening method, thermal analysis by structure characterization (TASC), which can rapidly detect the melting point depression of a crystalline drug in the presence of a polymeric material. In this study, we used melting point depression as an indicator of drug solubility in a polymer and further explored the potential of using the TASC method to rapidly screen and identify polymers in which a drug is likely to have high solubility. Here, we used a data bank of 5 model drugs and 10 different pharmaceutical grade polymers to validate the screening potential of TASC. The data indicated that TASC could provide significant improvement in the screening speed and reduce the materials used without compromising the sensitivity of detection. It should be highlighted that the current method is a screening method rather than a method that provides absolute measurement of the degree of solubility of a drug in a polymer. The results of this study confirmed that the TASC results of each drug-polymer pair could be used in data matrices to indicate the presence of significant interaction and solubility of the drug in the polymer. This forms the foundation for automating the screening process using artificial intelligence
In-line monitoring of compaction properties on a rotary tablet press during tablet manufacturing of hot-melt extruded amorphous solid dispersions
Phenoxy resins containing pendent ethynyl groups and cured resins obtained therefrom
Phenoxy resins containing pendent ethynyl groups, the process for preparing the same, and the cured resin products obtained therefrom are disclosed. Upon the application of heat, the ethynyl groups react to provide branching and crosslinking with the cure temperature being lowered by using a catalyst if desired but not required. The cured phenoxy resins containing pendent ethynyl groups have improved solvent resistance and higher use temperature than linear uncrosslinked phenoxy resins and are applicable for use as coatings, films, adhesives, composited matrices and molding compounds
Double-walled carbon nanotube-based polymer composites for electromagnetic protection.
In this paper, we present a microwave absorber based on carbon nanotubes (CNT) dispersed inside a BenzoCycloButenw (BCB) polymer. The high aspect ratio and remarkable conductive characteristics of CNT give rise to good absorbing properties for electromagnetic protecting in microelectronic devices with very low concentration. In this article, nanocomposites are prepared using a solution-mixing method and are then evaluated and modeled by means of coplanar test structures. First, CNT concentrations are quantified by image processing. The nanocomposites implemented with coplanar test waveguides are then characterized using a vector network analyzer from 40 MHz to 20 GHz. An algorithm is developed to calculate the propagation constant "γ" constant "α", and relative effective complex permittivity (εreff = εreff' - jεreff'') for each CNT concentration. The extracted effective parameters are verified using the electromagnetic FEM-based Ansoft’s® high frequency structure simulator (HFSS). Power absorption (PA) of 7 dB at 15 GHz is obtained with only 0.37 weight percent of CNT concentration in the polymer matrix. The resulting engineerable and controllable composite provides consequently a novel degree of freedom to design and optimize innovative microwave components
Silodosin oral films: Development, physico-mechanical properties and in vitro dissolution studies in simulated saliva
Sublingual film dosage forms for drugs used for fast symptomatic treatment have promise because they allow a rapid onset of action. The aim of this study was to prepare films of silodosin intended for sublingual administration for the symptomatic treatment of benign prostatic hyperplasia in men. Hydroxypropyl methylcellulose (HPMC) or hydroxypropyl methylcellulose acetate succinate (HPMC-AS) were used as film-forming polymers. The effects of the polymers and the surfactant tocopherol polyethylene glycol succinate (TPGS) on the physico-mechanical properties and dissolution behavior of the films in simulated saliva were investigated. The eight silodosin oral films developed (F1–F8) contained 8 mg silodosin per 6 cm2 film and HPMC or HPMC-AS in drug:polymer ratios of 1:5 or 1:3, while four also contained TPGS (0.5% w/w). The films were characterized using DSC, TGA, SEM, and PXRD and the mechanical properties were investigated by measuring tensile strength, elongation at break and Young's modulus. The mechanical properties of the films were dependent on the ratio of polymer used. The in vitro dissolution and drug release studies indicated that HPMC-AS films disintegrated more quickly than HPMC films. Silodosin was shown to be dispersed within the polymers. Despite silodosin being submicronized in the HPMC films, the dissolution and drug release rate (time for 80% release) from HPMC films was significantly faster than from HPMC-AS films. TPGS increased the drug release rate to a greater extent with HPMC than with HPMC-AS. The degree of saturation of formulation F4 was >1, which shows potential for improving oral absorption of silodosin.Peer reviewe
Synthesis and properties of a new AB-cross-linked copolymer membrane system
The alcohol permeability and permselectivity properties as well as the morphology of membranes made of a newly developed AB-cross-linked copolymer system composed of elastomeric and glassy components were investigated. The copolymer was synthesized by a hydrosilylation reaction between poly(styrene-stat-isoprenes) (Mn from 40,000 to 100,000 g/mol) with high content in unsaturated side groups (≈ 60% of entire isoprene content) and polyhydrogen polysiloxanes with varying SiH content (0.75 10.7 mol %) and molecular mass, Mn, from 2,500 to 36,000 g/mol. A two-track approach was taken to determine the morphology of the copolymer system. The first employed the usual polymer characterization methods such as electron microscopy, DSC, IR spectroscopy, the density gradient method, and mechanical measurements. For the second approach, different copolymer permeability models were tested so as to give an insight into the copolymer morphology. As a final step, the permeability and permselectivity properties were correlated with the morphological structure of the copolymer system. It was observed that the respective continuous microphase dominated the copolymer's physical properties, as, e.g., permeability, permselectivity, and mechanical properties. The microphase inversion in the copolymer system was proved by the permeability/permselectivity as well as by the mechanical measurements
- …
