15,669 research outputs found
Elastic Deformation of Polycrystals
We propose a framework to model elastic properties of polycrystals by
coupling crystal orientational degrees of freedom with elastic strains. Our
model encodes crystal symmetries and takes into account explicitly the strain
compatibility induced long-range interaction between grains. The coupling of
crystal orientation and elastic interactions allows for the rotation of
individual grains by an external load. We apply the model to simulate uniaxial
tensile loading of a 2D polycrystal within linear elasticity and a system with
elastic anharmonicities that describe structural phase transformations. We
investigate the constitutive response of the polycrystal and compare it to that
of single crystals with crystallographic orientations that form the
polycrystal.Comment: 4 pages, 4 ps figure
Stress-Induced Phase Transformations in Shape-Memory Polycrystals
Shape-memory alloys undergo a solid-to-solid phase transformation involving a change of crystal structure. We examine model problems in the scalar setting motivated by the situation when this transformation is induced by the application of stress in a polycrystalline material made of numerous grains of the same crystalline solid with varying orientations. We show that the onset of transformation in a granular polycrystal with homogeneous elasticity is in fact predicted accurately by the so-called Sachs bound based on the ansatz of uniform stress. We also present a simple example where the onset of phase transformation is given by the Sachs bound, and the extent of phase transformation is given by the constant strain Taylor bound. Finally we discuss the stress–strain relations of the general problem using Milton–Serkov bounds
Advances in martensitic transformations in Cu-based shape memory alloys achieved by in situ neutron and synchrotron X-ray diffraction methods
This article deals with the application of several X-ray and neutron diffraction methods to investigate the mechanics of a stress induced martensitic transformation in Cu-based shape memory alloy polycrystals. It puts experimental results obtained by two different research groups on different length scales into context with the mechanics of stress induced martensitic transformation in polycrystalline environment
Irreversible flow of vortex matter: polycrystal and amorphous phases
We investigate the microscopic mechanisms giving rise to plastic depinning
and irreversible flow in vortex matter. The topology of the vortex array
crucially determines the flow response of this system. To illustrate this
claim, two limiting cases are considered: weak and strong pinning interactions.
In the first case disorder is strong enough to introduce plastic effects in the
vortex lattice. Diffraction patterns unveil polycrystalline lattice topology
with dislocations and grain boundaries determining the electromagnetic response
of the system. Filamentary flow is found to arise as a consequence of
dislocation dynamics. We analize the stability of vortex lattices against the
formation of grain boundaries, as well as the steady state dynamics for
currents approaching the depinning critical current from above, when vortex
motion is mainly localized at the grain boundaries. On the contrary, a
dislocation description proves no longer adequate in the second limiting case
examined. For strong pinning interactions, the vortex array appears completely
amorphous and no remnant of the Abrikosov lattice order is left. Here we obtain
the critical current as a function of impurity density, its scaling properties,
and characterize the steady state dynamics above depinning. The plastic
depinning observed in the amorphous phase is tightly connected with the
emergence of channel-like flow. Our results suggest the possibility of
establishing a clear distinction between two topologically disordered vortex
phases: the vortex polycrystal and the amorphous vortex matter.Comment: 13 pages, 16 figure
Optimal configuration of microstructure in ferroelectric materials by stochastic optimization
An optimization procedure determining the ideal configuration at the
microstructural level of ferroelectric (FE) materials is applied to maximize
piezoelectricity. Piezoelectricity in ceramic FEs differ significantly from
that of single crystals because of the presence of crystallites (grains)
possessing crystallographic axes aligned imperfectly. The piezoelectric
properties of a polycrystalline (ceramic) FE is inextricably related to the
grain orientation distribution (texture). The set of combination of variables,
known as solution space, which dictates the texture of a ceramic is unlimited
and hence the choice of the optimal solution which maximizes the
piezoelectricity is complicated. Thus a stochastic global optimization combined
with homogenization is employed for the identification of the optimal granular
configuration of the FE ceramic microstructure with optimum piezoelectric
properties. The macroscopic equilibrium piezoelectric properties of
polycrystalline FE is calculated using mathematical homogenization at each
iteration step. The configuration of grains characterised by its orientations
at each iteration is generated using a randomly selected set of orientation
distribution parameters. Apparent enhancement of piezoelectric coefficient
is observed in an optimally oriented BaTiO single crystal. A
configuration of crystallites, simultaneously constraining the orientation
distribution of the c-axis (polar axis) while incorporating ab-plane
randomness, which would multiply the overall piezoelectricity in ceramic
BaTiO is also identified. The orientation distribution of the c-axes is
found to be a narrow Gaussian distribution centred around . The
piezoelectric coefficient in such a ceramic is found to be nearly three times
as that of the single crystal.Comment: 11 pages, 7 figure
Domain Patterns, Texture and Macroscopic Electro-mechanical Behavior of Ferroelectrics
This paper examines the domain patterns and its relation to the macroscopic electromechanical behavior of ferroelectric solids using a theory based on homogenization and energy minimization. The domain patterns in different crystalline systems are classified, the spontaneous strain and polarization for single crystals and polycrystals are characterized, and the optimal texture of polycrystals for high-strain actuation is identified. The results also reveal why it is easy to pole PZT at compositions close to the 'morphotropic phase boundary'
- …
