225,356 research outputs found
Systematic comparison of monoclonal versus polyclonal antibodies for mapping histone modifications by ChIP-seq.
BackgroundThe robustness of ChIP-seq datasets is highly dependent upon the antibodies used. Currently, polyclonal antibodies are the standard despite several limitations: They are non-renewable, vary in performance between lots and need to be validated with each new lot. In contrast, monoclonal antibody lots are renewable and provide consistent performance. To increase ChIP-seq standardization, we investigated whether monoclonal antibodies could replace polyclonal antibodies. We compared monoclonal antibodies that target five key histone modifications (H3K4me1, H3K4me3, H3K9me3, H3K27ac and H3K27me3) to their polyclonal counterparts in both human and mouse cells.ResultsOverall performance was highly similar for four monoclonal/polyclonal pairs, including when we used two distinct lots of the same monoclonal antibody. In contrast, the binding patterns for H3K27ac differed substantially between polyclonal and monoclonal antibodies. However, this was most likely due to the distinct immunogen used rather than the clonality of the antibody.ConclusionsAltogether, we found that monoclonal antibodies as a class perform equivalently to polyclonal antibodies for the detection of histone post-translational modifications in both human and mouse. Accordingly, we recommend the use of monoclonal antibodies in ChIP-seq experiments
Characterization of monoclonal and polyclonal antibodies to bovine enteric coronavirus: Establishment of an efficient ELISA for antigen detection in feces
Monoclonal antibodies to bovine enteric coronavirus (BEC) were produced. Additionally, polyclonal antibodies were made in rabbits and guinea pigs and extracted from the yolk of immunized hens. The antibodies were characterized by neutralization test, hemagglutination inhibition test, enzyme-linked immunosorbent assay (ELISA) and immunoblotting. Neutralizing antibody titers of polyclonal antisera ranged from 1:1280 to 1:40 000. Only one out of 908 hybridoma colonies tested secreted antibodies with neutralizing activity. By ELISA, polyclonal sera exhibited high background reactions that could be significantly reduced by treatment with kaolin in the case of rabbit sera.
Attempts to establish an ELISA for BEC antigen detection based on polyclonal sera failed due to low sensitivity and specificity. Optimal results were achieved when a mixture of two monoclonal antibodies was coated onto microplates for antigen capture, while rabbit hyperimmune serum served as detecting antibodies in an indirect assay.
The combination of the two monoclonal antibodies did not increase sensitivity synergistically, but in a compensatory fashion, probably because of epitope differences between BEC field strain
Clonal Composition of Human Adrenocortical Neoplasms
The mechanisms of tumorigenesis of adrenocortical neoplasms are still not understood. Tumor formation may be the result of spontaneous transformation of adrenocortical cells by somatic mutations. Another factor stimulating adrenocortical cell growth and potentially associated with formation of adrenal adenomas and, less frequently, carcinomas is the chronic elevation of proopiomelanocortin-derived peptides in diseases like ACTH-dependent Cushing's syndrome and congenital adrenal hyperplasia. To further investigate the pathogenesis of adrenocortical neoplasms, we studied the clonal composition of such tumors using X-chromosome inactivation analysis of the highly polymorphic region Xcen-Xp11.4 with the hybridization probe M27ß, which maps to a variable number of tandem repeats on the X-chromsome. In addition, polymerase chain reaction amplification of a phosphoglycerokinase gene polymorphism was performed. After DNA extraction from tumorous adrenal tissue and normal leukocytes in parallel, the active X-chromosome of each sample was digested with the methylation-sensitive restriction enzyme HpaII. A second digestion with an appropriate restriction enzyme revealed the polymorphism of the region Xcen-Xp11.4 and the phosphoglycerokinase locus. Whereas in normal polyclonal tissue both the paternal and maternal alleles are detected, a monoclonal tumor shows only one of the parental alleles. A total of 21 female patients with adrenal lesions were analyzed; 17 turned out to be heterozygous for at least one of the loci. Our results were as follows: diffuse (n = 4) and nodular (n = 1) adrenal hyperplasia in patients with ACTH-dependent Cushing's syndrome, polyclonal pattern; adrenocortical adenomas (n = 8), monoclonal (n = 7), as well as polyclonal (n = 1); adrenal carcinomas (n = 3), monoclonal pattern. One metastasis of an adrenocortical carcinoma showed a pattern most likely due to tumor-associated loss of methylation. In the special case of a patient with bilateral ACTH-independent macronodular hyperplasia, diffuse hyperplastic areas and a small nodule showed a polyclonal pattern, whereas a large nodule was monoclonal. We conclude that most adrenal adenomas and carcinomas are monoclonal, whereas diffuse and nodular adrenal hyperplasias are polyclonal. The clonal composition of ACTH-independent massive macronodular hyperplasia seems to be heterogeneous, consisting of polyclonal and monoclonal areas
An empirical approach towards the efficient and optimal production of influenza-neutralizing ovine polyclonal antibodies demonstrates that the novel adjuvant CoVaccine HT(TM) is functionally superior to Freund's adjuvant
Passive immunotherapies utilising polyclonal antibodies could have a valuable role in preventing and treating infectious diseases such as influenza, particularly in pandemic situations but also in immunocompromised populations such as the elderly, the chronically immunosuppressed, pregnant women, infants and those with chronic diseases. The aim of this study was to optimise current methods used to generate ovine polyclonal antibodies. Polyclonal antibodies to baculovirus-expressed recombinant influenza haemagglutinin from A/Puerto Rico/8/1934 H1N1 (PR8) were elicited in sheep using various immunisation regimens designed to investigate the priming immunisation route, adjuvant formulation, sheep age, and antigen dose, and to empirically ascertain which combination maximised antibody output. The novel adjuvant CoVaccine HT™ was compared to Freund’s adjuvant which is currently the adjuvant of choice for commercial production of ovine polyclonal Fab therapies. CoVaccine HT™ induced significantly higher titres of functional ovine anti-haemagglutinin IgG than Freund’s adjuvant but with fewer side effects, including reduced site reactions. Polyclonal hyperimmune sheep sera effectively neutralised influenza virus in vitro and, when given before or after influenza virus challenge, prevented the death of infected mice. Neither the age of the sheep nor the route of antigen administration appeared to influence antibody titre. Moreover, reducing the administrated dose of haemagglutinin antigen minimally affected antibody titre. Together, these results suggest a cost effective way of producing high and sustained yields of functional ovine polyclonal antibodies specifically for the prevention and treatment of globally significant diseases.Natalie E. Stevens, Cara K. Fraser, Mohammed Alsharifi, Michael P. Brown, Kerrilyn R. Diener, John D. Haybal
A platelet alpha-granule membrane protein (GMP-140) is expressed on the plasma membrane after activation.
We have previously characterized a monoclonal antibody, S12, that binds only to activated platelets (McEver, R.P., and M.N. Martin, 1984, J. Biol. Chem., 259:9799-9804). It identifies a platelet membrane protein of Mr 140,000, which we have designated as GMP-140. Using immunocytochemical techniques we have now localized this protein in unstimulated and thrombin-stimulated platelets. Polyclonal antibodies to purified GMP-140 were used to enhance the sensitivity of detection. Nonpermeabilized, unstimulated platelets, incubated with anti-GMP-140 antibodies, and then with IgG-gold probes, showed very little label for GMP-140 along their plasma membranes. In contrast, thrombin-stimulated platelets exhibited at least a 50-fold increase in the amount of label along the plasma membrane. On frozen thin sections of unstimulated platelets we observed immunogold label along the alpha-granule membranes. We also employed the more sensitive technique of permeabilizing with saponin unstimulated platelets in suspension, and then incubating the cells with polyclonal anti-GMP-140 antibodies and Fab-peroxidase conjugate. Alpha-granule membranes showed heavy reaction product, but no other intracellular organelles were specifically labeled. These results demonstrate that GMP-140 is an alpha-granule membrane protein that is expressed on the platelet plasma membrane during degranulation
Effect of the Strawberry Genotype, Cultivation and Processing on the Fra a 1 Allergen Content
Birch pollen allergic patients show cross-reactivity to vegetables and fruits, including
strawberries (Fragaria × ananassa). The objective of this study was to quantify the level of the
Fra a 1 protein, a Bet v 1-homologous protein in strawberry fruits by a newly developed ELISA,
and determine the effect of genotype, cultivation and food processing on the allergen amount.
An indirect competitive ELISA using a specific polyclonal anti-Fra a 1.02 antibody was established
and revealed high variability in Fra a 1 levels within 20 different genotypes ranging from 0.67
to 3.97 μg/g fresh weight. Mature fruits of red-, white- and yellow-fruited strawberry cultivars
showed similar Fra a 1 concentrations. Compared to fresh strawberries, oven and solar-dried
fruits contained slightly lower levels due to thermal treatment during processing. SDS-PAGE and
Western blot analysis demonstrated degradation of recombinant Fra a 1.02 after prolonged (>10 min)
thermal treatment at 99 ◦ C. In conclusion, the genotype strongly determined the Fra a 1 quantity
in strawberries and the color of the mature fruits does not relate to the amount of the PR10-protein.
Cultivation conditions (organic and conventional farming) do not affect the Fra a 1 level, and seasonal
effects were minor
Immunization expands B cells specific to HIV-1 V3 glycan in mice and macaques.
Broadly neutralizing monoclonal antibodies protect against infection with HIV-1 in animal models, suggesting that a vaccine that elicits these antibodies would be protective in humans. However, it has not yet been possible to induce adequate serological responses by vaccination. Here, to activate B cells that express precursors of broadly neutralizing antibodies within polyclonal repertoires, we developed an immunogen, RC1, that facilitates the recognition of the variable loop 3 (V3)-glycan patch on the envelope protein of HIV-1. RC1 conceals non-conserved immunodominant regions by the addition of glycans and/or multimerization on virus-like particles. Immunization of mice, rabbits and rhesus macaques with RC1 elicited serological responses that targeted the V3-glycan patch. Antibody cloning and cryo-electron microscopy structures of antibody-envelope complexes confirmed that immunization with RC1 expands clones of B cells that carry the anti-V3-glycan patch antibodies, which resemble precursors of human broadly neutralizing antibodies. Thus, RC1 may be a suitable priming immunogen for sequential vaccination strategies in the context of polyclonal repertoires
Altered modulation of lamin A/C-HDAC2 interaction and p21 expression during oxidative stress response in HGPS
Defects in stress response are main determinants of cellular senescence and organism aging. In fibroblasts from patients affected by Hutchinson-Gilford progeria, a severe LMNA-linked syndrome associated with bone resorption, cardiovascular disorders, and premature aging, we found altered modulation of CDKN1A, encoding p21, upon oxidative stress induction, and accumulation of senescence markers during stress recovery. In this context, we unraveled a dynamic interaction of lamin A/C with HDAC2, an histone deacetylase that regulates CDKN1A expression. In control skin fibroblasts, lamin A/C is part of a protein complex including HDAC2 and its histone substrates; protein interaction is reduced at the onset of DNA damage response and recovered after completion of DNA repair. This interplay parallels modulation of p21 expression and global histone acetylation, and it is disrupted by LMNAmutations leading to progeroid phenotypes. In fact, HGPS cells show impaired lamin A/C-HDAC2 interplay and accumulation of p21 upon stress recovery. Collectively, these results link altered physical interaction between lamin A/C and HDAC2 to cellular and organism aging. The lamin A/C-HDAC2 complex may be a novel therapeutic target to slow down progression of progeria symptoms
The structural organization and protein composition of lens fiber junctions.
The structural organization and protein composition of lens fiber junctions isolated from adult bovine and calf lenses were studied using combined electron microscopy, immunolocalization with monoclonal and polyclonal anti-MIP and anti-MP70 (two putative gap junction-forming proteins), and freeze-fracture and label-fracture methods. The major intrinsic protein of lens plasma membranes (MIP) was localized in single membranes and in an extensive network of junctions having flat and undulating surface topologies. In wavy junctions, polyclonal and monoclonal anti-MIPs labeled only the cytoplasmic surface of the convex membrane of the junction. Label-fracture experiments demonstrated that the convex membrane contained MIP arranged in tetragonal arrays 6-7 nm in unit cell dimension. The apposing concave membrane of the junction displayed fracture faces without intramembrane particles or pits. Therefore, wavy junctions are asymmetric structures composed of MIP crystals abutted against particle-free membranes. In thin junctions, anti-MIP labeled the cytoplasmic surfaces of both apposing membranes with varying degrees of asymmetry. In thin junctions, MIP was found organized in both small clusters and single membranes. These small clusters also abut against particle-free apposing membranes, probably in a staggered or checkerboard pattern. Thus, the structure of thin and wavy junctions differed only in the extent of crystallization of MIP, a property that can explain why this protein can produce two different antibody-labeling patterns. A conclusion of this study is that wavy and thin junctions do not contain coaxially aligned channels, and, in these junctions, MIP is unlikely to form gap junction-like channels. We suggest MIP may behave as an intercellular adhesion protein which can also act as a volume-regulating channel to collapse the lens extracellular space. Junctions constructed of MP70 have a wider overall thickness (18-20 nm) and are abundant in the cortical regions of the lens. A monoclonal antibody raised against this protein labeled these thicker junctions on the cytoplasmic surfaces of both apposing membranes. Thick junctions also contained isolated clusters of MIP inside the plaques of MP70. The role of thick junctions in lens physiology remains to be determined
APLF (C2orf13) is a novel human protein involved in the cellular response to chromosomal DNA strand breaks
Aprataxin and polynucleotide kinase (PNK) are DNA end processing factors that are recruited into the DNA single- and double-strand break repair machinery through phosphorylation-specific interactions with XRCC1 and XRCC4, respectively. These interactions are mediated through a divergent class of forkhead-associated (FHA) domain that binds to peptide sequences in XRCC1 and XRCC4 that are phosphorylated by casein kinase 2 (CK2). Here, we identify the product of the uncharacterized open reading frame C2orf13 as a novel member of this FHA domain family of proteins and we denote this protein APLF (aprataxin- and PNK-like factor). We show that APLF interacts with XRCC1 in vivo and in vitro in a manner that is stimulated by CK2. Yeast two-hybrid analyses suggest that APLF also interacts with the double-strand break repair proteins XRCC4 and XRCC5 (Ku86). We also show that endogenous and yellow fluorescent protein-tagged APLF accumulates at sites of H(2)O(2) or UVA laser-induced chromosomal DNA damage and that this is achieved through at least two mechanisms: one that requires the FHA domain-mediated interaction with XRCC1 and a second that is independent of XRCC1 but requires a novel type of zinc finger motif located at the C terminus of APLF. Finally, we demonstrate that APLF is phosphorylated in a DNA damage- and ATM-dependent manner and that the depletion of APLF from noncycling human SH-SY5Y neuroblastoma cells reduces rates of chromosomal DNA strand break repair following ionizing radiation. These data identify APLF as a novel component of the cellular response to DNA strand breaks in human cells
- …
