9,514 research outputs found

    Functionalised polyanaline nanofibers

    Get PDF
    Polyaniline (PAni) is a conducting polymer which switches between distinct states exhibiting dramatically different properties. The colour, conductivity and redox state of PAni all depend on the local chemical environment of the material. Consequently PAni has great potential for sensing applications. The nanostructured form of PAni is particularly interesting as it provides a very large surface-to-volume ratio that can lead to dramatic enhancement of sensor sensitivity and response time. In this work, we focus on derivatising polyaniline nanofibres. Using the technique described, carboxylate terminated side-chains can be covalently bound to solution based fibres

    Functionalised nanostructured polyaniline? A new substrate for building adaptive sensing surfaces

    Get PDF
    A new method for covalently binding side-chains to the surface of solution based conducting polymer nanostructures is introduced in this paper. Modification of the structures is achieved by convenient reflux in the presence of a nucleophile, and post-functionalization purification is subsequently carried out by centrifugation. The entire process is easily scalable and hence suitable for bulk production of functionalized nanomaterials. In particular we focus on the modification of polyaniline nanofibres which can be synthesized by interfacial polymerization. Mercaptoundecanoic acid side-chains are attached to the polymer nanostructures, with the intrinsic nano-morphology of the material being maintained during the process. The modified PAni nanofibres provide a template for the attachment of other specific functional groups which could be used to target a particular species

    Conducting Polyaniline Filaments in a Mesoporous Channel Host

    Get PDF

    Synthesis and characterisation of controllably functionalised polyaniline nanofibres

    Get PDF
    A novel method for functionalising solution based polyaniline (PAni) nanofibres is reported whereby the degree of side-chain attachment can be controllably altered. The covalent attachment of functional side-groups to the surface of PAni nanostructures is achieved by post-polymerisation reflux in the presence of a nucleophile and the functionalised nanomaterial can be purified by simple centrifugation. The technique is therefore easily scalable. We demonstrate that control over the extent of side-chain attachment can be achieved simply by altering the amount of nucleophile added during reflux. We provide evidence that covalently attached carboxlate side-chains influence the doping mechanism of polyaniline and can be used to introduce self-doping behaviour. Acid functionalised nanofibres remain redox active and retain their optical switching capabilities in response to changes in the local chemical environment, thus making them suitable for adaptive sensing applications

    Temperature dependent charge transport mechanisms in carbon sphere/polymer composites

    Full text link
    Carbon spheres (CS) with diameters in the range 210μm2 - 10 \mu m were prepared via hydrolysis of a sucrose solution at 200oC,200^o C, and later annealed in N2N_2 at 800oC.800^o C. The spheres were highly conducting but difficult to process into thin films or pressed pellets. In our previous work, composite samples of CS and the insulating polymer polyethylene oxide (PEO) were prepared and their charge transport was analyzed in the temperature range 80K<T<300K. 80 K < T < 300 K. Here, we analyze charge transport in CS coated with a thin polyaniline (PANi) film doped with hydrochloric acid (HCl), in the same temperature range. The goal is to study charge transport in the CS using a conducting polymer (PANi) as a binder and compare with that occurring at CS/PEO. A conductivity maxima was observed in the CS/PEO composite but was absent in CS/PANi. Our data analysis shows that variable range hopping of electrons between polymeric chains in PANi-filled gaps between CS takes on a predominant part in transport through CS/PANi composites, whereas in CS/PEO composites, electrons travel through gaps between CS solely by means of direct tunneling. This difference in transport mechanisms results in different temperature dependences of the conductivity.Comment: 7 pages, 6 figure

    The metallic state in disordered quasi-one-dimensional conductors

    Get PDF
    The unusual metallic state in conjugated polymers and single-walled carbon nanotubes is studied by dielectric spectroscopy (8--600 GHz). We have found an intriguing correlation between scattering time and plasma frequency. This relation excludes percolation models of the metallic state. Instead, the carrier dynamics can be understood in terms of the low density of delocalized states around the Fermi level, which arises from the competion between disorder-induced localization and interchain-interactions-induced delocalization.Comment: 4 pages including 4 figure
    corecore